論文の概要: Matmul or No Matmal in the Era of 1-bit LLMs
- arxiv url: http://arxiv.org/abs/2408.11939v2
- Date: Wed, 28 Aug 2024 19:51:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 18:25:25.204223
- Title: Matmul or No Matmal in the Era of 1-bit LLMs
- Title(参考訳): 1ビットLDM時代のマツマルかノーマツマルか
- Authors: Jinendra Malekar, Mohammed E. Elbtity, Ramtin Zand,
- Abstract要約: 1ビットの大規模言語モデル(LLM)が注目され、新たな研究機会が開かれた。
しかし、1ビット LLM は射影層に極端な量子化を適用することで、少数のモデルを改善するのみである。
本研究では, 1 ビット LLM コンテキストに適した Amdahl's Law の適応について述べる。
- 参考スコア(独自算出の注目度): 0.48212500317840945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of 1-bit large language models (LLMs) has attracted considerable attention and opened up new research opportunities. However, 1-bit LLMs only improve a fraction of models by applying extreme quantization to the projection layers while leaving attention heads unchanged. Therefore, to avoid fundamentally wrong choices of goals in future research, it is crucial to understand the actual improvements in computation and memory usage that 1-bit LLMs can deliver. In this work, we present an adaptation of Amdahl's Law tailored for the 1-bit LLM context, which illustrates how partial improvements in 1-bit LLMs impact overall model performance. Through extensive experiments, we uncover key nuances across different model architectures and hardware configurations, offering a roadmap for future research in the era of 1-bit LLMs.
- Abstract(参考訳): 1ビットの大規模言語モデル(LLM)の出現は注目され、新たな研究機会が開かれた。
しかし、1ビット LLM は射影層に極端に量子化を施し、注意を向けることなく少数のモデルを改善するだけである。
したがって、将来の研究における目標の根本的な誤った選択を避けるためには、1ビットのLLMがもたらす計算とメモリ使用量の実際の改善を理解することが不可欠である。
本研究では,1ビットLLMの文脈に適合したアムダールの法則を適応させ,1ビットLLMの部分的改善がモデル全体の性能に与える影響を示す。
大規模な実験を通じて、異なるモデルアーキテクチャとハードウェア構成にまたがる重要なニュアンスを明らかにし、1ビットLLMの時代における将来の研究のロードマップを提供する。
関連論文リスト
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - A Comprehensive Analysis on LLM-based Node Classification Algorithms [21.120619437937382]
我々はLarge Language Models (LLMs) を用いたノード分類のための包括的でテストベッドを開発する。
10のデータセット、8つのLLMベースのアルゴリズム、3つの学習パラダイムを含み、新しいメソッドとデータセットで簡単に拡張できるように設計されている。
パフォーマンスに影響を与える重要な設定を決定するために、広範な実験、トレーニング、および2200以上のモデルの評価を行います。
その結果, LLM法は半教師付き環境で従来の手法を著しく上回り, その利点は教師付き環境ではごくわずかである,という8つの知見が得られた。
論文 参考訳(メタデータ) (2025-02-02T15:56:05Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - LLMs are Also Effective Embedding Models: An In-depth Overview [40.53941563464671]
大規模言語モデル(LLM)は、様々なタスクで最先端のパフォーマンスを達成することによって、自然言語処理に革命をもたらした。
近年、埋め込みモデルとしての有効性が注目され、ELMoやBERTのような従来のエンコーダのみのモデルから、GPT、LLaMA、Mistralのようなデコーダのみの大規模LLMへとパラダイムシフトした。
論文 参考訳(メタデータ) (2024-12-17T06:48:24Z) - Performance Law of Large Language Models [58.32539851241063]
性能法則は、LLMアーキテクチャの選択と計算資源の効率的な割り当てを導くために用いられる。
性能法則は、LLMアーキテクチャの選択と計算資源の効率的な割り当てを広範な実験なしで導くのに利用できる。
論文 参考訳(メタデータ) (2024-08-19T11:09:12Z) - An empirical study of LLaMA3 quantization: from LLMs to MLLMs [54.91212829143966]
LLaMAファミリーは、最も強力なオープンソースの大規模言語モデル(LLM)の1つである。
LLaMA3モデルは、15T以上のデータに対する超大規模事前トレーニングによって、様々な領域で優れたパフォーマンスを実現している。
我々は,LLaMA3の1-8ビットおよび様々なデータセット上で,LLaMA3の学習後量子化とLoRA微調整(LoRA-FT)の10種類の既存手法を評価し,LLaMA3の低ビット量子化性能を明らかにする。
論文 参考訳(メタデータ) (2024-04-22T10:03:03Z) - The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [129.6765656933016]
我々は1ビットのLarge Language Models (LLMs) 、すなわちBitNet b1.58を導入する。
1.58ビット LLM は、新しい世代の LLM を訓練するための新しいスケーリング法則とレシピを定義している。
これは新しいパラダイムを可能にし、1ビットLLM向けに最適化された特定のハードウェアを設計するための扉を開く。
論文 参考訳(メタデータ) (2024-02-27T18:56:19Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - OpenMoE: An Early Effort on Open Mixture-of-Experts Language Models [44.848642930797155]
OpenMoEは、完全にオープンソースで再現可能なデコーダのみのMixture-of-Experts (MoE)ベースの大規模言語モデル(LLM)のシリーズである。
本研究は,MoEをベースとしたLLMの方が高密度LLMよりも良好なコスト効率のトレードオフを提供できることを確認した。
MoEモデルにおけるルーティング決定は、主にトークンIDに基づいており、最小限のコンテキスト関連性がある。
論文 参考訳(メタデータ) (2024-01-29T12:05:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。