Energy Estimation of Last Mile Electric Vehicle Routes
- URL: http://arxiv.org/abs/2408.12006v1
- Date: Wed, 21 Aug 2024 21:38:40 GMT
- Title: Energy Estimation of Last Mile Electric Vehicle Routes
- Authors: André Snoeck, Aniruddha Bhargava, Daniel Merchan, Josiah Davis, Julian Pachon,
- Abstract summary: Last-mile carriers increasingly incorporate electric vehicles (EVs) into their delivery fleet to achieve sustainability goals.
This paper addresses the problem of predicting energy consumption of EVs for Last-Mile delivery routes using deep learning.
We share a range of deep learning solutions, beginning with a Feed Forward Neural Network (NN) and Recurrent Neural Network (RNN)
- Score: 0.62914438169038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Last-mile carriers increasingly incorporate electric vehicles (EVs) into their delivery fleet to achieve sustainability goals. This goal presents many challenges across multiple planning spaces including but not limited to how to plan EV routes. In this paper, we address the problem of predicting energy consumption of EVs for Last-Mile delivery routes using deep learning. We demonstrate the need to move away from thinking about range and we propose using energy as the basic unit of analysis. We share a range of deep learning solutions, beginning with a Feed Forward Neural Network (NN) and Recurrent Neural Network (RNN) and demonstrate significant accuracy improvements relative to pure physics-based and distance-based approaches. Finally, we present Route Energy Transformer (RET) a decoder-only Transformer model sized according to Chinchilla scaling laws. RET yields a +217 Basis Points (bps) improvement in Mean Absolute Percentage Error (MAPE) relative to the Feed Forward NN and a +105 bps improvement relative to the RNN.
Related papers
- Electric Vehicle Routing Problem for Emergency Power Supply: Towards Telecom Base Station Relief [1.3716669765394296]
We consider a solution where electric vehicles (EVs) directly supply power to base stations by traveling to their locations.
The goal is to find EV routes that minimize both the total travel distance of all EVs and the number of downed base stations.
We propose a solver that combines a rule-based vehicle selector and a reinforcement learning (RL)-based node selector.
arXiv Detail & Related papers (2024-04-03T04:27:07Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - Forecasting Battery Electric Vehicle Charging Behavior: A Deep Learning
Approach Equipped with Micro-Clustering and SMOTE Techniques [0.0]
Transportation electrification is being promoted worldwide to reduce emissions.
Many automakers will soon start making only battery electric vehicles (BEVs)
This study develops a novel Micro Clustering Deep Neural Network (MCDNN), an artificial neural network algorithm that is highly effective at learning BEVs trip and charging data.
arXiv Detail & Related papers (2023-07-20T05:03:25Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
The electric vehicle routing problem (EVRP) has garnered great interest from researchers and industrialists in an attempt to move from fuel-based vehicles to healthier and more efficient electric vehicles (EVs)
Previous works target logistics and delivery-related solutions wherein a homogeneous fleet of commercial EVs have to return to the initial point after making multiple stops.
We perform multi-objective optimization - minimizing the total trip time and the cumulative cost of charging.
arXiv Detail & Related papers (2022-08-26T05:09:59Z) - A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem [9.655068751758952]
Electric vehicles (EVs) have been adopted in urban areas to reduce environmental pollution and global warming.
There are still deficiencies in routing the trajectories of last-mile logistics that continue to impact social and economic sustainability.
This paper proposes a hyper-heuristic approach called Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning.
arXiv Detail & Related papers (2022-06-07T11:10:38Z) - E^2VTS: Energy-Efficient Video Text Spotting from Unmanned Aerial
Vehicles [78.50123964690094]
Unmanned Aerial Vehicles (UAVs) based video text spotting has been extensively used in civil and military domains.
Our proposed energy-efficient video text spotting solution, dubbed as E2VTS, outperforms all previous methods by achieving a competitive tradeoff between energy efficiency and performance.
arXiv Detail & Related papers (2022-06-05T22:43:17Z) - A Reinforcement Learning Approach for Electric Vehicle Routing Problem
with Vehicle-to-Grid Supply [2.6066825041242367]
We present QuikRouteFinder that uses reinforcement learning (RL) for EV routing to overcome these challenges.
Results from RL are compared against exact formulations based on mixed-integer linear program (MILP) and genetic algorithm (GA) metaheuristics.
arXiv Detail & Related papers (2022-04-12T06:13:06Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.