論文の概要: Mental-Perceiver: Audio-Textual Multimodal Learning for Mental Health Assessment
- arxiv url: http://arxiv.org/abs/2408.12088v1
- Date: Thu, 22 Aug 2024 02:54:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 15:23:41.567346
- Title: Mental-Perceiver: Audio-Textual Multimodal Learning for Mental Health Assessment
- Title(参考訳): メンタル・パーセンティブ:メンタルヘルスアセスメントのためのオーディオ・テキスト・マルチモーダル学習
- Authors: Jinghui Qin, Changsong Liu, Tianchi Tang, Dahuang Liu, Minghao Wang, Qianying Huang, Yang Xu, Rumin Zhang,
- Abstract要約: 不安や抑うつといった精神障害は、さまざまな年齢の人々の生活に影響を及ぼす世界的な問題となっている。
我々は,マンダリン話者の不安と抑うつ評価に関する大規模テキストbfMulti-textbfModal textbfpsychological Assessment corpus (MMPsy)を構築した。
我々のデータセットには、不安評価のためのインタビューの7,700件、うつ病評価のための4,200件以上の記録が含まれています。
- 参考スコア(独自算出の注目度): 10.584792972403596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mental disorders, such as anxiety and depression, have become a global issue that affects the regular lives of people across different ages. Without proper detection and treatment, anxiety and depression can hinder the sufferer's study, work, and daily life. Fortunately, recent advancements of digital and AI technologies provide new opportunities for better mental health care and many efforts have been made in developing automatic anxiety and depression assessment techniques. However, this field still lacks a publicly available large-scale dataset that can facilitate the development and evaluation of AI-based techniques. To address this limitation, we have constructed a new large-scale \textbf{M}ulti-\textbf{M}odal \textbf{Psy}chological assessment corpus (MMPsy) on anxiety and depression assessment of Mandarin-speaking adolescents. The MMPsy contains audios and extracted transcripts of responses from automated anxiety or depression assessment interviews along with the self-reported anxiety or depression evaluations of the participants using standard mental health assessment questionnaires. Our dataset contains over 7,700 post-processed recordings of interviews for anxiety assessment and over 4,200 recordings for depression assessment. Using this dataset, we have developed a novel deep-learning based mental disorder estimation model, named \textbf{Mental-Perceiver}, to detect anxious/depressive mental states from recorded audio and transcript data. Extensive experiments on our MMPsy and the commonly-used DAIC-WOZ datasets have shown the effectiveness and superiority of our proposed Mental-Perceiver model in anxiety and depression detection. The MMPsy dataset will be made publicly available later to facilitate the research and development of AI-based techniques in the mental health care field.
- Abstract(参考訳): 不安や抑うつといった精神障害は、さまざまな年齢の人々の生活に影響を及ぼす世界的な問題となっている。
適切な検出と治療がなければ、不安と抑うつは患者の研究、仕事、日常生活を妨げうる。
幸いなことに、デジタルおよびAI技術の最近の進歩は、より良いメンタルヘルスに新たな機会を与え、自動不安とうつ病評価技術の開発に多くの取り組みがなされている。
しかし、この分野には、AIベースの技術の開発と評価を容易にする、公開可能な大規模なデータセットがない。
この制限に対処するため,マンダリン話者の不安度と抑うつ度を指標として,新しい大規模 \textbf{M}ulti-\textbf{M}odal \textbf{Psy}chological Assessment corpus (MMPsy) を構築した。
MMPsyは、自己申告された不安や抑うつの評価と、標準的メンタルヘルスアセスメントのアンケートによる参加者の自己申告された不安や抑うつの評価から、音声と反応の書き起こしを含む。
我々のデータセットには、不安評価のためのインタビューの7,700件、うつ病評価のための4,200件以上の記録が含まれています。
このデータセットを用いて,記録された音声および転写データから不安/抑うつ的精神状態を検出するための,新しい深層学習型精神障害推定モデルである「textbf{Mental-Perceiver}」を開発した。
MMPsyと一般的に使用されているDAIC-WOZデータセットの大規模な実験は、不安と抑うつの検出において提案したメンタル・パーセンテージモデルの有効性と優位性を示した。
MMPsyデータセットは後に公開され、メンタルヘルス分野におけるAIベースの技術の研究と開発を促進する。
関連論文リスト
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - Depression Detection and Analysis using Large Language Models on Textual and Audio-Visual Modalities [25.305909441170993]
うつ病は公衆衛生上の重大な問題であり、個人の心理的健康に大きな影響を与えている。
診断されていない場合、うつ病は重篤な健康問題を引き起こし、身体的に現れて自殺に至る。
論文 参考訳(メタデータ) (2024-07-08T17:00:51Z) - EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
この研究は、抑うつのリスクがある個人を特定するために、ロマタイズド・シンハラのソーシャルメディアデータの利用を探求する。
言語パターン、感情、行動の手がかりを分析することにより、抑うつ症状の自動スクリーニングのための機械学習ベースのフレームワークが提示される。
論文 参考訳(メタデータ) (2024-03-28T10:31:09Z) - A Hybrid Approach for Depression Classification: Random Forest-ANN
Ensemble on Motor Activity Signals [4.798808180453298]
ウェアラブルセンサーは、メンタルヘルスの問題を追跡し、理解する潜在的な手段を提供する。
近年の研究では、これらのセンサーと機械学習の手法を併用して、異なる精神状態に関連するパターンを特定している。
本稿では、うつ病患者のセンサデータを評価するために最適化されたHybrid Random forest - Neural Networkと呼ばれる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-13T17:39:35Z) - DEPAC: a Corpus for Depression and Anxiety Detection from Speech [3.2154432166999465]
本稿では、うつ病と不安スクリーニングツールの確立したしきい値に基づいてラベル付けされた、心的苦痛分析オーディオデータセットDEPACを紹介する。
この大きなデータセットは、個人ごとの複数の音声タスクと、関連する人口統計情報から構成される。
人間の音声における精神疾患の徴候の同定に有効な,手作業による音響的特徴と言語的特徴からなる特徴セットを提案する。
論文 参考訳(メタデータ) (2023-06-20T12:21:06Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
論文 参考訳(メタデータ) (2022-02-07T10:24:33Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
不安障害は、子供と成人の両方に影響を及ぼす最も一般的な精神医学的問題である。
スマートフォンから受動的かつ控えめなデータ収集を活用することは、古典的な方法の代替となるかもしれない。
eWellnessは、個人デバイスのセンサとユーザログデータの完全な適合性を、連続的かつ受動的に追跡するために設計された、実験的なモバイルアプリケーションである。
論文 参考訳(メタデータ) (2020-08-09T20:22:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。