Mental-Perceiver: Audio-Textual Multi-Modal Learning for Estimating Mental Disorders
- URL: http://arxiv.org/abs/2408.12088v2
- Date: Tue, 04 Feb 2025 02:32:07 GMT
- Title: Mental-Perceiver: Audio-Textual Multi-Modal Learning for Estimating Mental Disorders
- Authors: Jinghui Qin, Changsong Liu, Tianchi Tang, Dahuang Liu, Minghao Wang, Qianying Huang, Rumin Zhang,
- Abstract summary: Mental disorders, such as anxiety and depression, have become a global concern that affects people of all ages.
Although AI-based detection methods show promise, progress is hindered by the lack of publicly available large-scale datasets.
We propose Mental-Perceiver, a deep learning model for estimating mental disorders from audio and textual data.
- Score: 9.222458475626652
- License:
- Abstract: Mental disorders, such as anxiety and depression, have become a global concern that affects people of all ages. Early detection and treatment are crucial to mitigate the negative effects these disorders can have on daily life. Although AI-based detection methods show promise, progress is hindered by the lack of publicly available large-scale datasets. To address this, we introduce the Multi-Modal Psychological assessment corpus (MMPsy), a large-scale dataset containing audio recordings and transcripts from Mandarin-speaking adolescents undergoing automated anxiety/depression assessment interviews. MMPsy also includes self-reported anxiety/depression evaluations using standardized psychological questionnaires. Leveraging this dataset, we propose Mental-Perceiver, a deep learning model for estimating mental disorders from audio and textual data. Extensive experiments on MMPsy and the DAIC-WOZ dataset demonstrate the effectiveness of Mental-Perceiver in anxiety and depression detection.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - A Novel Audio-Visual Information Fusion System for Mental Disorders Detection [6.3344832182228]
Mental disorders are among the foremost contributors to the global healthcare challenge.
In this paper, we focus on the emotional expression features of mental disorders and introduce a multimodal mental disorder diagnosis system based on audio-visual information input.
Our proposed system is based on spatial-temporal attention networks and innovative uses a less computationally intensive pre-train audio recognition network to fine-tune the video recognition module for better results.
arXiv Detail & Related papers (2024-09-03T19:16:36Z) - Predicting Depression and Anxiety: A Multi-Layer Perceptron for
Analyzing the Mental Health Impact of COVID-19 [1.9809980686152868]
We introduce a multi-layer perceptron (MLP) called the COVID-19 Depression and Anxiety Predictor (CoDAP) to predict mental health trends during the COVID-19 pandemic.
Our method utilizes a comprehensive dataset, which tracked mental health symptoms weekly over ten weeks during the initial COVID-19 wave (April to June 2020) in a diverse cohort of U.S. adults.
This model not only predicts patterns of anxiety and depression during the pandemic but also unveils key insights into the interplay of demographic factors, behavioral changes, and social determinants of mental health.
arXiv Detail & Related papers (2024-03-09T22:49:04Z) - DEPAC: a Corpus for Depression and Anxiety Detection from Speech [3.2154432166999465]
We introduce a novel mental distress analysis audio dataset DEPAC, labeled based on established thresholds on depression and anxiety screening tools.
This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information.
We present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech.
arXiv Detail & Related papers (2023-06-20T12:21:06Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
Depression is a common mental illness that has to be detected and treated at an early stage to avoid serious consequences.
We developed a gold standard data set that detects the levels of depression as not depressed', moderately depressed' and severely depressed' from the social media postings.
arXiv Detail & Related papers (2022-02-07T10:24:33Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
Anxiety disorders are the most common class of psychiatric problems affecting both children and adults.
Leveraging passive and unobtrusive data collection from smartphones could be a viable alternative to classical methods.
eWellness is an experimental mobile application designed to track a full-suite of sensor and user-log data off an individual's device in a continuous and passive manner.
arXiv Detail & Related papers (2020-08-09T20:22:52Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.