Deep Analysis of Time Series Data for Smart Grid Startup Strategies: A Transformer-LSTM-PSO Model Approach
- URL: http://arxiv.org/abs/2408.12129v1
- Date: Thu, 22 Aug 2024 04:52:02 GMT
- Title: Deep Analysis of Time Series Data for Smart Grid Startup Strategies: A Transformer-LSTM-PSO Model Approach
- Authors: Zecheng Zhang,
- Abstract summary: Transformer-LSTM-PSO model is designed to more effectively capture the complex temporal relationships in grid startup schemes.
Model achieves lower RMSE and MAE values across multiple datasets compared to existing benchmarks.
The application of the Transformer-LSTM-PSO model represents a significant advancement in smart grid predictive analytics.
- Score: 0.8702432681310401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grid startup, an integral component of the power system, holds strategic importance for ensuring the reliability and efficiency of the electrical grid. However, current methodologies for in-depth analysis and precise prediction of grid startup scenarios are inadequate. To address these challenges, we propose a novel method based on the Transformer-LSTM-PSO model. This model uniquely combines the Transformer's self-attention mechanism, LSTM's temporal modeling capabilities, and the parameter tuning features of the particle swarm optimization algorithm. It is designed to more effectively capture the complex temporal relationships in grid startup schemes. Our experiments demonstrate significant improvements, with our model achieving lower RMSE and MAE values across multiple datasets compared to existing benchmarks, particularly in the NYISO Electric Market dataset where the RMSE was reduced by approximately 15% and the MAE by 20% compared to conventional models. Our main contribution is the development of a Transformer-LSTM-PSO model that significantly enhances the accuracy and efficiency of smart grid startup predictions. The application of the Transformer-LSTM-PSO model represents a significant advancement in smart grid predictive analytics, concurrently fostering the development of more reliable and intelligent grid management systems.
Related papers
- A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis.
To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component.
arXiv Detail & Related papers (2024-09-22T14:07:10Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Differential Evolution Algorithm based Hyper-Parameters Selection of
Transformer Neural Network Model for Load Forecasting [0.0]
Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism.
Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-07-28T04:29:53Z) - MATNet: Multi-Level Fusion Transformer-Based Model for Day-Ahead PV
Generation Forecasting [0.47518865271427785]
MATNet is a novel self-attention transformer-based architecture for PV power generation forecasting.
It consists of a hybrid approach that combines the AI paradigm with the prior physical knowledge of PV power generation.
Results show that our proposed architecture significantly outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-06-17T14:03:09Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - DA-LSTM: A Dynamic Drift-Adaptive Learning Framework for Interval Load
Forecasting with LSTM Networks [1.3342521220589318]
A drift magnitude threshold should be defined to design change detection methods to identify drifts.
We propose a dynamic drift-adaptive Long Short-Term Memory (DA-LSTM) framework that can improve the performance of load forecasting models.
arXiv Detail & Related papers (2023-05-15T16:26:03Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
In current control strategies and optimization algorithms, most of them rely on receiving information from real-time feedback.
We propose an engineer-friendly control strategy framework that embeds dynamic prior knowledge from building system characteristics simultaneously for system control.
We tested it in a case for heating system control with typical control strategies, which shows our framework owns a further energy-saving potential of 15%.
arXiv Detail & Related papers (2023-01-23T09:07:07Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Short-term Prediction of Household Electricity Consumption Using
Customized LSTM and GRU Models [5.8010446129208155]
This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem.
The electricity consumption datasets were obtained from individual household smart meters.
arXiv Detail & Related papers (2022-12-16T23:42:57Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.