DRExplainer: Quantifiable Interpretability in Drug Response Prediction with Directed Graph Convolutional Network
- URL: http://arxiv.org/abs/2408.12139v1
- Date: Thu, 22 Aug 2024 05:45:48 GMT
- Title: DRExplainer: Quantifiable Interpretability in Drug Response Prediction with Directed Graph Convolutional Network
- Authors: Haoyuan Shi, Tao Xu, Xiaodi Li, Qian Gao, Junfeng Xia, Zhenyu Yue,
- Abstract summary: We propose a novel interpretable predictive model, DRExplainer, for drug response prediction.
DRExplainer constructs a directed bipartite network integrating multi-omics profiles of cell lines, the chemical structure of drugs and known drug response.
In computational experiments, DRExplainer outperforms state-of-the-art predictive methods and another graph-based explanation method.
- Score: 9.641021461914551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the response of a cancer cell line to a therapeutic drug is pivotal for personalized medicine. Despite numerous deep learning methods that have been developed for drug response prediction, integrating diverse information about biological entities and predicting the directional response remain major challenges. Here, we propose a novel interpretable predictive model, DRExplainer, which leverages a directed graph convolutional network to enhance the prediction in a directed bipartite network framework. DRExplainer constructs a directed bipartite network integrating multi-omics profiles of cell lines, the chemical structure of drugs and known drug response to achieve directed prediction. Then, DRExplainer identifies the most relevant subgraph to each prediction in this directed bipartite network by learning a mask, facilitating critical medical decision-making. Additionally, we introduce a quantifiable method for model interpretability that leverages a ground truth benchmark dataset curated from biological features. In computational experiments, DRExplainer outperforms state-of-the-art predictive methods and another graph-based explanation method under the same experimental setting. Finally, the case studies further validate the interpretability and the effectiveness of DRExplainer in predictive novel drug response. Our code is available at: https://github.com/vshy-dream/DRExplainer.
Related papers
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
We propose a novel Epidemiology-informed Network (EIN) that integrates epidemiological knowledge to enhance performance.
To adapt epidemiology theory to rumor detection, it is expected that each users stance toward the source information will be annotated.
Our experimental results demonstrate that the proposed EIN not only outperforms state-of-the-art methods on real-world datasets but also exhibits enhanced robustness across varying tree depths.
arXiv Detail & Related papers (2024-11-20T00:43:32Z) - Controllable Edge-Type-Specific Interpretation in Multi-Relational Graph Neural Networks for Drug Response Prediction [6.798254568821052]
We propose a novel post-hoc interpretability algorithm for cancer drug response prediction, CETExplainer.
It incorporates a controllable edge-type-specific weighting mechanism to provide fine-grained, biologically meaningful explanations for predictive models.
Empirical analysis on the real-world dataset demonstrates that CETExplainer achieves superior stability and improves explanation quality compared to leading algorithms.
arXiv Detail & Related papers (2024-08-30T09:14:38Z) - Research on Adverse Drug Reaction Prediction Model Combining Knowledge Graph Embedding and Deep Learning [36.703773706187256]
This paper develops an adverse drug reaction prediction model based on knowledge graph embedding and deep learning.
The obtained prediction model has good prediction accuracy and stability, and can provide an effective reference for later safe medication guidance.
arXiv Detail & Related papers (2024-07-23T03:25:55Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Interpreting the Mechanism of Synergism for Drug Combinations Using
Attention-Based Hierarchical Graph Pooling [10.898133007285638]
We develop an interpretable graph neural network (GNN) that reveals the underlying essential therapeutic targets and the mechanism of the synergy (MoS)
The proposed GNN model provides a systematic way to predict and interpret the drug combination synergism based on the detected crucial sub-molecular network.
arXiv Detail & Related papers (2022-09-19T11:18:45Z) - Convolutional Motif Kernel Networks [1.104960878651584]
We show that our model is able to robustly learn on small datasets and reaches state-of-the-art performance on relevant healthcare prediction tasks.
Our proposed method can be utilized on DNA and protein sequences.
arXiv Detail & Related papers (2021-11-03T15:06:09Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
We propose a multimodal graph neural network that can predict the synergistic effect of drug combinations for cancer treatment.
Our model captures the representation based on the context of drugs at multiple scales based on a drug-protein interaction network and metadata.
We demonstrate that the model makes high-quality predictions over a wide range of cancer cell line tissues.
arXiv Detail & Related papers (2021-10-28T13:10:25Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Text Mining to Identify and Extract Novel Disease Treatments From
Unstructured Datasets [56.38623317907416]
We use Google Cloud to transcribe podcast episodes of an NPR radio show.
We then build a pipeline for systematically pre-processing the text.
Our model successfully identified that Omeprazole can help treat heartburn.
arXiv Detail & Related papers (2020-10-22T19:52:49Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.