Interpreting the Mechanism of Synergism for Drug Combinations Using
Attention-Based Hierarchical Graph Pooling
- URL: http://arxiv.org/abs/2209.09245v2
- Date: Tue, 22 Aug 2023 18:45:42 GMT
- Title: Interpreting the Mechanism of Synergism for Drug Combinations Using
Attention-Based Hierarchical Graph Pooling
- Authors: Zehao Dong, Heming Zhang, Yixin Chen, Philip R.O. Payne and Fuhai Li
- Abstract summary: We develop an interpretable graph neural network (GNN) that reveals the underlying essential therapeutic targets and the mechanism of the synergy (MoS)
The proposed GNN model provides a systematic way to predict and interpret the drug combination synergism based on the detected crucial sub-molecular network.
- Score: 10.898133007285638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synergistic drug combinations provide huge potentials to enhance therapeutic
efficacy and to reduce adverse reactions. However, effective and synergistic
drug combination prediction remains an open question because of the unknown
causal disease signaling pathways. Though various deep learning (AI) models
have been proposed to quantitatively predict the synergism of drug
combinations, the major limitation of existing deep learning methods is that
they are inherently not interpretable, which makes the conclusions of AI models
untransparent to human experts, henceforth limiting the robustness of the model
conclusion and the implementation ability of these models in real-world
human--AI healthcare. In this paper, we develop an interpretable graph neural
network (GNN) that reveals the underlying essential therapeutic targets and the
mechanism of the synergy (MoS) by mining the sub-molecular network of great
importance. The key point of the interpretable GNN prediction model is a novel
graph pooling layer, a self-attention-based node and edge pool (henceforth
SANEpool), that can compute the attention score (importance) of genes and
connections based on the genomic features and topology. As such, the proposed
GNN model provides a systematic way to predict and interpret the drug
combination synergism based on the detected crucial sub-molecular network.
Experiments on various well-adopted drug-synergy-prediction datasets
demonstrate that (1) the SANEpool model has superior predictive ability to
generate accurate synergy score prediction, and (2) the sub-molecular networks
detected by the SANEpool are self-explainable and salient for identifying
synergistic drug combinations.
Related papers
- Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
We propose a novel hierarchical graph representation learning model for the drug-target binding affinity prediction, namely HGRL-DTA.
In this paper, we adopt a message broadcasting mechanism to integrate the hierarchical representations learned from the global-level affinity graph and the local-level molecular graph. Besides, we design a similarity-based embedding map to solve the cold start problem of inferring representations for unseen drugs and targets.
arXiv Detail & Related papers (2022-03-22T04:50:16Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
We propose a multimodal graph neural network that can predict the synergistic effect of drug combinations for cancer treatment.
Our model captures the representation based on the context of drugs at multiple scales based on a drug-protein interaction network and metadata.
We demonstrate that the model makes high-quality predictions over a wide range of cancer cell line tissues.
arXiv Detail & Related papers (2021-10-28T13:10:25Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
computational screening has become an important way to prioritize drug combinations.
DeepDDS was superior to competitive methods by more than 16% predictive precision.
arXiv Detail & Related papers (2021-07-06T08:25:43Z) - Quantitative Evaluation of Explainable Graph Neural Networks for
Molecular Property Prediction [2.8544822698499255]
Graph neural networks (GNNs) remain of limited acceptance in drug discovery due to their lack of interpretability.
In this work, we build three levels of benchmark datasets to quantitatively assess the interpretability of the state-of-the-art GNN models.
We implement recent XAI methods in combination with different GNN algorithms to highlight the benefits, limitations, and future opportunities for drug discovery.
arXiv Detail & Related papers (2021-07-01T04:49:29Z) - Interpretable Drug Synergy Prediction with Graph Neural Networks for
Human-AI Collaboration in Healthcare [23.151336811933938]
We propose a deep graph neural network, IDSP, to incorporate the gene-gene as well as gene-drug regulatory relationships in synergic drug combination predictions.
IDSP automatically learns weights of edges based on the gene and drug node relations, by a multi-layer perceptron (MLP) and aggregates information in an inductive manner.
We test IDWSP on signaling networks formulated by genes from 46 core cancer signaling pathways and drug combinations from NCI ALMANAC drug combination screening data.
arXiv Detail & Related papers (2021-05-14T22:20:29Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.