A deep graph model for the signed interaction prediction in biological network
- URL: http://arxiv.org/abs/2407.07357v2
- Date: Mon, 17 Mar 2025 23:54:17 GMT
- Title: A deep graph model for the signed interaction prediction in biological network
- Authors: Shuyi Jin, Mengji Zhang, Meijie Wang, Lun Yu,
- Abstract summary: Predicting signed interactions in biological networks is crucial for understanding drug mechanisms and facilitating drug repurposing.<n>textbfRGCNTD is designed to predict both polar (e.g. activation, inhibition) and non-polar (e.g. binding, affect) chemical-gene interactions.<n>We introduce new evaluation metrics, textitAUCtextsubscriptpolarity and textitCP@500, to assess the model's ability to differentiate interaction types.
- Score: 1.03121181235382
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting signed interactions in biological networks is crucial for understanding drug mechanisms and facilitating drug repurposing. While deep graph models have demonstrated success in modeling complex biological systems, existing approaches often fail to distinguish between positive and negative interactions, limiting their utility for precise pharmacological predictions. In this study, we propose a novel deep graph model, \textbf{RGCNTD} (Relational Graph Convolutional Network with Tensor Decomposition), designed to predict both polar (e.g., activation, inhibition) and non-polar (e.g., binding, affect) chemical-gene interactions. Our model integrates graph convolutional networks with tensor decomposition to enhance feature representation and incorporates a conflict-aware sampling strategy to resolve polarity ambiguities. We introduce new evaluation metrics, \textit{AUC\textsubscript{polarity}} and \textit{CP@500}, to assess the model's ability to differentiate interaction types. Experimental results demonstrate that \textbf{RGCNTD} outperforms baseline models, achieving superior classification accuracy and improved discrimination of polar edges. Furthermore, we analyze the impact of subgraph components on predictive performance, revealing that additional network structures do not always enhance accuracy. These findings highlight the importance of polarity-aware modeling in drug discovery and network pharmacology, providing a robust framework for predicting complex biological interactions.
Related papers
- Heterogeneous network drug-target interaction prediction model based on graph wavelet transform and multi-level contrastive learning [8.154286666697312]
This study proposes a heterogeneous network drug target interaction prediction framework.
It integrates graph neural network and multi scale signal processing technology to construct a model with both efficient prediction and multi level interpretability.
Experimental results show that our framework shows excellent prediction performance on all datasets.
arXiv Detail & Related papers (2025-04-27T09:29:50Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - A Deep Learning Approach to the Prediction of Drug Side-Effects on
Molecular Graphs [2.4087148947930634]
We develop a methodology to predict drug side-effects using Graph Neural Networks.
We build a dataset from freely accessible and well established data sources.
The results show that our method has an improved classification capability, under many parameters and metrics.
arXiv Detail & Related papers (2022-11-30T10:12:41Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
Current biological networks are noisy, sparse, and incomplete. Experimental identification of such interactions is both time-consuming and expensive.
Deep graph neural networks have shown their effectiveness in modeling graph-structured data and achieved good performance in biomedical interaction prediction.
Our proposed method enables the graph convolutional networks to dynamically adapt their depths to accommodate an increasing number of interactions.
arXiv Detail & Related papers (2022-11-22T20:44:28Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Interpreting the Mechanism of Synergism for Drug Combinations Using
Attention-Based Hierarchical Graph Pooling [10.898133007285638]
We develop an interpretable graph neural network (GNN) that reveals the underlying essential therapeutic targets and the mechanism of the synergy (MoS)
The proposed GNN model provides a systematic way to predict and interpret the drug combination synergism based on the detected crucial sub-molecular network.
arXiv Detail & Related papers (2022-09-19T11:18:45Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
We propose a novel hierarchical graph representation learning model for the drug-target binding affinity prediction, namely HGRL-DTA.
In this paper, we adopt a message broadcasting mechanism to integrate the hierarchical representations learned from the global-level affinity graph and the local-level molecular graph. Besides, we design a similarity-based embedding map to solve the cold start problem of inferring representations for unseen drugs and targets.
arXiv Detail & Related papers (2022-03-22T04:50:16Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
We propose a multimodal graph neural network that can predict the synergistic effect of drug combinations for cancer treatment.
Our model captures the representation based on the context of drugs at multiple scales based on a drug-protein interaction network and metadata.
We demonstrate that the model makes high-quality predictions over a wide range of cancer cell line tissues.
arXiv Detail & Related papers (2021-10-28T13:10:25Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Structure-aware Interactive Graph Neural Networks for the Prediction of
Protein-Ligand Binding Affinity [52.67037774136973]
Drug discovery often relies on the successful prediction of protein-ligand binding affinity.
Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes.
We propose a structure-aware interactive graph neural network (SIGN) which consists of two components: polar-inspired graph attention layers (PGAL) and pairwise interactive pooling (PiPool)
arXiv Detail & Related papers (2021-07-21T03:34:09Z) - Interpretable Drug Synergy Prediction with Graph Neural Networks for
Human-AI Collaboration in Healthcare [23.151336811933938]
We propose a deep graph neural network, IDSP, to incorporate the gene-gene as well as gene-drug regulatory relationships in synergic drug combination predictions.
IDSP automatically learns weights of edges based on the gene and drug node relations, by a multi-layer perceptron (MLP) and aggregates information in an inductive manner.
We test IDWSP on signaling networks formulated by genes from 46 core cancer signaling pathways and drug combinations from NCI ALMANAC drug combination screening data.
arXiv Detail & Related papers (2021-05-14T22:20:29Z) - Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions [79.45090959869124]
We present a systematic investigation using graph neural networks (GNNs) to model organic chemical reactions.
We evaluate seven different GNN architectures for classification tasks pertaining to the identification of experimental reagents and conditions.
arXiv Detail & Related papers (2020-07-08T17:21:00Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.