MDD-5k: A New Diagnostic Conversation Dataset for Mental Disorders Synthesized via Neuro-Symbolic LLM Agents
- URL: http://arxiv.org/abs/2408.12142v1
- Date: Thu, 22 Aug 2024 05:59:47 GMT
- Title: MDD-5k: A New Diagnostic Conversation Dataset for Mental Disorders Synthesized via Neuro-Symbolic LLM Agents
- Authors: Congchi Yin, Feng Li, Shu Zhang, Zike Wang, Jun Shao, Piji Li, Jianhua Chen, Xun Jiang,
- Abstract summary: We design a neuro-symbolic multi-agent framework for synthesizing the diagnostic conversation of mental disorders.
By applying the proposed framework, we develop the largest Chinese mental disorders diagnosis dataset MDD-5k.
- Score: 25.987334407396396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The clinical diagnosis of most mental disorders primarily relies on the conversations between psychiatrist and patient. The creation of such diagnostic conversation datasets is promising to boost the AI mental healthcare community. However, directly collecting the conversations in real diagnosis scenarios is near impossible due to stringent privacy and ethical considerations. To address this issue, we seek to synthesize diagnostic conversation by exploiting anonymous patient cases that are easier to access. Specifically, we design a neuro-symbolic multi-agent framework for synthesizing the diagnostic conversation of mental disorders with large language models. It takes patient case as input and is capable of generating multiple diverse conversations with one single patient case. The framework basically involves the interaction between a doctor agent and a patient agent, and achieves text generation under symbolic control via a dynamic diagnosis tree from a tool agent. By applying the proposed framework, we develop the largest Chinese mental disorders diagnosis dataset MDD-5k, which is built upon 1000 cleaned real patient cases by cooperating with a pioneering psychiatric hospital, and contains 5000 high-quality long conversations with diagnosis results as labels. To the best of our knowledge, it's also the first labelled Chinese mental disorders diagnosis dataset. Human evaluation demonstrates the proposed MDD-5k dataset successfully simulates human-like diagnostic process of mental disorders. The dataset and code will become publicly accessible in https://github.com/lemonsis/MDD-5k.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Depression Diagnosis Dialogue Simulation: Self-improving Psychiatrist with Tertiary Memory [35.41386783586689]
This paper introduces the Agent Mental Clinic (AMC), a self-improving conversational agent system designed to enhance depression diagnosis through simulated dialogues between patient and psychiatrist agents.
We design a psychiatrist agent consisting of a tertiary memory structure, a dialogue control and a memory sampling module, fully leveraging the skills reflected by the psychiatrist agent, achieving great accuracy on depression risk and suicide risk diagnosis via conversation.
arXiv Detail & Related papers (2024-09-20T14:25:08Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - MDDial: A Multi-turn Differential Diagnosis Dialogue Dataset with
Reliability Evaluation [46.82607230465541]
Building end-to-end ADD dialogue systems requires dialogue training datasets.
There is no publicly available ADD dialogue dataset in English.
We introduce MDDial, the first differential diagnosis dialogue dataset in English.
arXiv Detail & Related papers (2023-08-16T04:56:55Z) - D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat [25.852922703368133]
In a depression-diagnosis-directed clinical session, doctors initiate a conversation with ample emotional support that guides the patients to expose their symptoms.
Due to the social stigma associated with mental illness, the dialogue data related to depression consultation and diagnosis are rarely disclosed.
We construct a Chinese dialogue dataset for Depression-Diagnosis-Oriented Chat which simulates the dialogue between doctors and patients during the diagnosis of depression.
arXiv Detail & Related papers (2022-05-24T03:54:22Z) - "My nose is running.""Are you also coughing?": Building A Medical
Diagnosis Agent with Interpretable Inquiry Logics [80.55587329326046]
We propose a more interpretable decision process to implement the dialogue manager of DSMD.
We devise a model with highly transparent components to conduct the inference.
Experiments show that our method obtains 7.7%, 10.0%, 3.0% absolute improvement in diagnosis accuracy.
arXiv Detail & Related papers (2022-04-29T09:02:23Z) - RobIn: A Robust Interpretable Deep Network for Schizophrenia Diagnosis [12.180396034315807]
Schizophrenia is a severe mental health condition that requires a long and complicated diagnostic process.
Past attempts to use deep learning for schizophrenia diagnosis from brain-imaging data have shown promise but suffer from a large training-application gap.
We propose to reduce this training-application gap by focusing on readily accessible data.
arXiv Detail & Related papers (2022-03-31T15:01:35Z) - Knowledge Grounded Conversational Symptom Detection with Graph Memory
Networks [5.788153402669881]
We build a system that can interact with patients through dialog to detect and collect clinical symptoms automatically.
Given a set of explicit symptoms provided by the patient to initiate a dialog for diagnosing, the system is trained to collect implicit symptoms by asking questions.
After getting the reply from the patient for each question, the system also decides whether current information is enough for a human doctor to make a diagnosis.
arXiv Detail & Related papers (2021-01-24T18:50:16Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.