SFF-DA: Sptialtemporal Feature Fusion for Detecting Anxiety
Nonintrusively
- URL: http://arxiv.org/abs/2208.06411v1
- Date: Fri, 12 Aug 2022 01:20:51 GMT
- Title: SFF-DA: Sptialtemporal Feature Fusion for Detecting Anxiety
Nonintrusively
- Authors: Haimiao Mo, Yuchen Li, Shanlin Yang, Wei Zhang, Shuai Ding
- Abstract summary: We propose a framework based on "3CNND+LSTM" and fused similarity features of facial behavior and noncontact physiology.
Our framework was validated with dataset from the real world and two public datasets.
- Score: 16.170315080992182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of anxiety disorders is essential to reduce the suffering of
people with mental disorders and to improve treatment outcomes. Anxiety
screening based on the mHealth platform is of particular practical value in
improving screening efficiency and reducing screening costs. In practice,
differences in mobile devices in subjects' physical and mental evaluations and
the problems faced with uneven data quality and small sample sizes of data in
the real world have made existing methods ineffective. Therefore, we propose a
framework based on spatiotemporal feature fusion for detecting anxiety
nonintrusively. To reduce the impact of uneven data quality, we constructed a
feature extraction network based on "3DCNN+LSTM" and fused spatiotemporal
features of facial behavior and noncontact physiology. Moreover, we designed a
similarity assessment strategy to solve the problem that the small sample size
of data leads to a decline in model accuracy. Our framework was validated with
our crew dataset from the real world and two public datasets, UBFC-PHYS and
SWELL-KW. The experimental results show that the overall performance of our
framework was better than that of the state-of-the-art comparison methods.
Related papers
- Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
We propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data.
We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry.
Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances.
arXiv Detail & Related papers (2024-03-28T15:41:43Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population.
We propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests.
To tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD)
arXiv Detail & Related papers (2023-10-25T19:02:57Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - A Multimodal Data-driven Framework for Anxiety Screening [15.002401707506941]
We propose a data-driven anxiety screening framework, namely MMD-AS, and conduct experiments on the collected health data of over 200 seafarers by smartphones.
The proposed framework's feature extraction, dimension reduction, feature selection, and anxiety inference are jointly trained to improve the model's performance.
arXiv Detail & Related papers (2023-03-16T02:25:05Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - FIT: a Fast and Accurate Framework for Solving Medical Inquiring and
Diagnosing Tasks [10.687562550605739]
Self-diagnosis provides low-cost and accessible healthcare via an agent that queries the patient and makes predictions about possible diseases.
We propose a competitive framework, called FIT, which uses an information-theoretic reward to determine what data to collect next.
Our results in two simulated datasets show that FIT can effectively deal with large search space problems, outperforming existing baselines.
arXiv Detail & Related papers (2020-12-02T10:12:49Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.