Large Language Models Are Self-Taught Reasoners: Enhancing LLM Applications via Tailored Problem-Solving Demonstrations
- URL: http://arxiv.org/abs/2408.12315v1
- Date: Thu, 22 Aug 2024 11:41:35 GMT
- Title: Large Language Models Are Self-Taught Reasoners: Enhancing LLM Applications via Tailored Problem-Solving Demonstrations
- Authors: Kai Tzu-iunn Ong, Taeyoon Kwon, Jinyoung Yeo,
- Abstract summary: We present SELF-TAUGHT, a problem-solving framework, which facilitates customized demonstrations.
In 15 tasks of multiple-choice questions, SELF-TAUGHT achieves superior performance to strong baselines.
We conduct comprehensive analyses on SELF-TAUGHT, including its generalizability to existing prompting methods.
- Score: 4.207253227315905
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Guiding large language models with a selected set of human-authored demonstrations is a common practice for improving LLM applications. However, human effort can be costly, especially in specialized domains (e.g., clinical diagnosis), and does not guarantee optimal performance due to the potential discrepancy of target skills between selected demonstrations and real test instances. Motivated by these, this paper explores the automatic creation of customized demonstrations, whose target skills align with the given target instance. We present SELF-TAUGHT, a problem-solving framework, which facilitates demonstrations that are "tailored" to the target problem and "filtered" for better quality (i.e., correctness) in a zero-shot manner. In 15 tasks of multiple-choice questions of diverse domains and the diagnosis of Alzheimer's disease (AD) with real-world patients, SELF-TAUGHT achieves superior performance to strong baselines (e.g., Few-shot CoT, Plan-and-Solve, Auto-CoT). We conduct comprehensive analyses on SELF-TAUGHT, including its generalizability to existing prompting methods and different LLMs, the quality of its intermediate generation, and more.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Improving In-Context Learning with Small Language Model Ensembles [2.3499129784547654]
In-context learning (ICL) is a cheap and efficient alternative but cannot match the accuracies of advanced methods.
We present Ensemble SuperICL, a novel approach that enhances ICL by leveraging the expertise of multiple fine-tuned small language models (SLMs)
arXiv Detail & Related papers (2024-10-29T09:02:37Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.
Existing evaluations tend to rely solely on a final success rate.
We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
Large Language Models (LLMs) have shown potential in various domains, yet their effectiveness in vulnerability localization remains underexplored.
Our investigation encompasses 10+ leading LLMs suitable for code analysis, including ChatGPT and various open-source models.
We explore the efficacy of these LLMs using 4 distinct paradigms: zero-shot learning, one-shot learning, discriminative fine-tuning, and generative fine-tuning.
arXiv Detail & Related papers (2024-03-30T08:42:10Z) - TOP-Training: Target-Oriented Pretraining for Medical Extractive Question Answering [53.92585020805746]
We study extractive question-answering in the medical domain (Medical-EQA)
This problem has two main challenges: (i) domain specificity, and (ii) extraction-based answering style.
We propose TOP-Training, a target-oriented pre-training paradigm.
arXiv Detail & Related papers (2023-10-25T20:48:16Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.