論文の概要: Neural-ANOVA: Model Decomposition for Interpretable Machine Learning
- arxiv url: http://arxiv.org/abs/2408.12319v1
- Date: Thu, 22 Aug 2024 11:55:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 14:13:31.996750
- Title: Neural-ANOVA: Model Decomposition for Interpretable Machine Learning
- Title(参考訳): Neural-AnoVA: 解釈可能な機械学習のためのモデル分解
- Authors: Steffen Limmer, Steffen Udluft, Clemens Otte,
- Abstract要約: 本稿では,ニューラルネットワークをガラス箱モデルに分解するアプローチであるNeural-ANOVAを紹介する。
本手法は,積分の迅速かつクローズドな評価を可能にする学習問題を定式化する。
- 参考スコア(独自算出の注目度): 2.321323878201932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The analysis of variance (ANOVA) decomposition offers a systematic method to understand the interaction effects that contribute to a specific decision output. In this paper we introduce Neural-ANOVA, an approach to decompose neural networks into glassbox models using the ANOVA decomposition. Our approach formulates a learning problem, which enables rapid and closed-form evaluation of integrals over subspaces that appear in the calculation of the ANOVA decomposition. Finally, we conduct numerical experiments to illustrate the advantages of enhanced interpretability and model validation by a decomposition of the learned interaction effects.
- Abstract(参考訳): 分散(ANOVA)分解の分析は、特定の決定出力に寄与する相互作用効果を理解するための体系的な方法を提供する。
本稿では,ANOVA分解を用いたガラス箱モデルにニューラルネットワークを分解する手法であるNeural-ANOVAを紹介する。
提案手法は,ANOVA分解計算に現れる部分空間上の積分の高速かつクローズドな評価を可能にする学習問題を定式化する。
最後に,学習された相互作用効果の分解による解釈可能性の向上とモデル検証の利点を示す数値実験を行った。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - META-ANOVA: Screening interactions for interpretable machine learning [4.047495522208112]
我々はメタアノバと呼ばれる新しい手法を開発し、任意の予測モデルに対して解釈可能なモデルを提供する。
Meta-ANOVAの新たな技術的貢献は、与えられたブラックボックスモデルを機能的ANOVAモデルに変換する前に不要な相互作用をスクリーニングする手順である。
論文 参考訳(メタデータ) (2024-08-02T01:49:29Z) - Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems [49.2319247825857]
拡散に基づく生成モデルは、ニューラル演算子に好適な多くの特性を示す。
本稿では,複数のタスクに適応可能な単一モデルを,トレーニング中のタスク間で交互に学習することを提案する。
論文 参考訳(メタデータ) (2024-05-11T21:23:55Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Information-Theoretic Diffusion [18.356162596599436]
拡散モデルのデノイングは密度モデリングや画像生成において大きな進歩をもたらした。
情報理論における古典的な結果にインスパイアされた拡散モデルのための新しい数学的基礎を導入する。
論文 参考訳(メタデータ) (2023-02-07T23:03:07Z) - Statistical Aspects of SHAP: Functional ANOVA for Model Interpretation [0.456877715768796]
SHAP近似の課題は、特徴分布の選択と推定されるANOVAの2ドル$ANOVAの項数に大きく関係していることが示される。
機械学習の説明可能性と感度分析の関連性は、このケースでは明らかにされているが、実際的な結果は明らかではない。
論文 参考訳(メタデータ) (2022-08-21T21:46:15Z) - On Numerical Integration in Neural Ordinary Differential Equations [0.0]
本稿では,数値積分がニューラルネットワークモデルの学習に与える影響を明らかにするために,逆修正微分方程式(IMDE)を提案する。
ニューラルODEモデルのトレーニングは、真のODEではなく、IMDEの近似を実際に返すことが示されている。
論文 参考訳(メタデータ) (2022-06-15T07:39:01Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
粒子変分推論(PVI)は、後部分布の実験的近似としてモデルのアンサンブルを用いる。
PVIは、最適化されたモデルの多様性を保証するために、各モデルを反発力で反復的に更新する。
我々は,新たな一般化誤差を導出し,モデルの多様性を高めて低減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T12:13:51Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Neural Decomposition: Functional ANOVA with Variational Autoencoders [9.51828574518325]
変分オートエンコーダ (VAEs) は次元減少に対する一般的なアプローチとなっている。
VAEのブラックボックスの性質のため、医療やゲノミクスの応用には限界があった。
本研究では,条件付きVAEの変動源の特徴付けに焦点をあてる。
論文 参考訳(メタデータ) (2020-06-25T10:29:13Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。