論文の概要: 4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment
- arxiv url: http://arxiv.org/abs/2408.12419v2
- Date: Thu, 12 Sep 2024 08:03:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 20:59:43.861079
- Title: 4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment
- Title(参考訳): 参照動作アライメントを用いた動的タンパク質構造予測のための4次元拡散
- Authors: Kaihui Cheng, Ce Liu, Qingkun Su, Jun Wang, Liwei Zhang, Yining Tang, Yao Yao, Siyu Zhu, Yuan Qi,
- Abstract要約: 本研究では分子動力学(MD)シミュレーションデータを用いた動的タンパク質構造学習のための革新的4次元拡散モデルを提案する。
我々の知る限り、これはタンパク質の軌道を複数の時間ステップで同時に予測することを目的とした初めての拡散モデルである。
- 参考スコア(独自算出の注目度): 18.90451943620277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Protein structure prediction is pivotal for understanding the structure-function relationship of proteins, advancing biological research, and facilitating pharmaceutical development and experimental design. While deep learning methods and the expanded availability of experimental 3D protein structures have accelerated structure prediction, the dynamic nature of protein structures has received limited attention. This study introduces an innovative 4D diffusion model incorporating molecular dynamics (MD) simulation data to learn dynamic protein structures. Our approach is distinguished by the following components: (1) a unified diffusion model capable of generating dynamic protein structures, including both the backbone and side chains, utilizing atomic grouping and side-chain dihedral angle predictions; (2) a reference network that enhances structural consistency by integrating the latent embeddings of the initial 3D protein structures; and (3) a motion alignment module aimed at improving temporal structural coherence across multiple time steps. To our knowledge, this is the first diffusion-based model aimed at predicting protein trajectories across multiple time steps simultaneously. Validation on benchmark datasets demonstrates that our model exhibits high accuracy in predicting dynamic 3D structures of proteins containing up to 256 amino acids over 32 time steps, effectively capturing both local flexibility in stable states and significant conformational changes.
- Abstract(参考訳): タンパク質の構造予測は、タンパク質の構造と機能の関係を理解し、生物学的研究を進め、医薬品開発と実験設計を促進するために重要である。
深層学習法と実験的な3Dタンパク質構造の拡張は構造予測を加速させてきたが、タンパク質構造の動的性質は限定的に注目されている。
本研究では分子動力学(MD)シミュレーションデータを用いた動的タンパク質構造学習のための革新的4次元拡散モデルを提案する。
提案手法は,(1)バックボーンと側鎖の両方を含む動的タンパク質構造を生成可能な統一拡散モデル,(2)初期3次元タンパク質構造の潜伏埋め込みを統合することで構造整合性を高める参照ネットワーク,(3)複数の時間ステップで時間的構造整合性を改善することを目的とした運動アライメントモジュールによって特徴付けられる。
我々の知る限り、これはタンパク質の軌道を複数の時間ステップで同時に予測することを目的とした初めての拡散モデルである。
ベンチマークデータセットの検証により,32時間で最大256個のアミノ酸を含むタンパク質の動的3次元構造を予測し,局所的な安定性と構造変化を効果的に捉えた。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
DPLM-2は, 離散拡散タンパク質言語モデル(DPLM)を拡張し, 配列と構造の両方に適合する多モーダルタンパク質基盤モデルである。
DPLM-2は、配列と構造、およびその限界と条件の結合分布を学習する。
実験によりDPLM-2は高度に互換性のあるアミノ酸配列とそれに対応する3D構造を同時に生成できることが示された。
論文 参考訳(メタデータ) (2024-10-17T17:20:24Z) - Dynamic PDB: A New Dataset and a SE(3) Model Extension by Integrating Dynamic Behaviors and Physical Properties in Protein Structures [15.819618708991598]
約12.6Kタンパク質を含む大規模データセットであるDynamic PDBを導入する。
我々は、原子速度と力、ポテンシャルと運動エネルギー、シミュレーション環境の温度を含む、総合的な物理特性スイートを提供する。
本研究は, 軌道予測の課題に対して, 提案したデータセット上での最先端手法の評価を行う。
論文 参考訳(メタデータ) (2024-08-22T14:06:01Z) - A Protein Structure Prediction Approach Leveraging Transformer and CNN
Integration [4.909112037834705]
本稿では、畳み込みニューラルネットワーク(CCN)を用いた2次元融合深層ニューラルネットワークモデルDstruCCNと、単一配列タンパク質構造予測のための教師付きトランスフォーマー言語モデルを採用する。
両者のトレーニング特徴を組み合わせ、タンパク質トランスフォーマー結合部位マトリックスを予測し、エネルギー最小化を用いて三次元構造を再構築する。
論文 参考訳(メタデータ) (2024-02-29T12:24:20Z) - Protein 3D Graph Structure Learning for Robust Structure-based Protein
Property Prediction [43.46012602267272]
タンパク質の構造に基づく特性予測は、様々な生物学的タスクにおいて有望なアプローチとして現れてきた。
現在のプラクティスは、推論中に正確に予測された構造を用いるだけで、予測精度の顕著な低下に悩まされている。
本フレームワークはモデルに依存しず,予測構造と実験構造の両方の特性予測の改善に有効である。
論文 参考訳(メタデータ) (2023-10-14T08:43:42Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
タンパク質のクラスとアーキテクチャの正確な(geq$80%)予測を、低い(leq$3A)解像度で決定された構造から行うことができることを示す。
本稿では, 高速で低コストなタンパク質構造を低解像度で分類するための概念実証と, 機能予測への拡張の基礎を提供する。
論文 参考訳(メタデータ) (2020-08-11T15:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。