Automatic Organ and Pan-cancer Segmentation in Abdomen CT: the FLARE 2023 Challenge
- URL: http://arxiv.org/abs/2408.12534v1
- Date: Thu, 22 Aug 2024 16:38:45 GMT
- Title: Automatic Organ and Pan-cancer Segmentation in Abdomen CT: the FLARE 2023 Challenge
- Authors: Jun Ma, Yao Zhang, Song Gu, Cheng Ge, Ershuai Wang, Qin Zhou, Ziyan Huang, Pengju Lyu, Jian He, Bo Wang,
- Abstract summary: Organ and cancer segmentation in abdomen Computed Tomography (CT) scans is the prerequisite for precise cancer diagnosis and treatment.
Most existing benchmarks and algorithms are tailored to specific cancer types, limiting their ability to provide comprehensive cancer analysis.
This work presents the first international competition on abdominal organ and pan-cancer segmentation by providing a large-scale and diverse dataset.
- Score: 15.649976310277099
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Organ and cancer segmentation in abdomen Computed Tomography (CT) scans is the prerequisite for precise cancer diagnosis and treatment. Most existing benchmarks and algorithms are tailored to specific cancer types, limiting their ability to provide comprehensive cancer analysis. This work presents the first international competition on abdominal organ and pan-cancer segmentation by providing a large-scale and diverse dataset, including 4650 CT scans with various cancer types from over 40 medical centers. The winning team established a new state-of-the-art with a deep learning-based cascaded framework, achieving average Dice Similarity Coefficient scores of 92.3% for organs and 64.9% for lesions on the hidden multi-national testing set. The dataset and code of top teams are publicly available, offering a benchmark platform to drive further innovations https://codalab.lisn.upsaclay.fr/competitions/12239.
Related papers
- A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - CancerUniT: Towards a Single Unified Model for Effective Detection,
Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection
of CT Scans [45.83431075462771]
Human readers or radiologists routinely perform full-body multi-organ multi-disease detection and diagnosis in clinical practice.
Most medical AI systems are built to focus on single organs with a narrow list of a few diseases.
CancerUniT is a query-based Mask Transformer model with the output of multi-tumor prediction.
arXiv Detail & Related papers (2023-01-28T20:09:34Z) - Multimodal CNN Networks for Brain Tumor Segmentation in MRI: A BraTS
2022 Challenge Solution [0.0]
This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge.
We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI.
It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively.
arXiv Detail & Related papers (2022-12-19T09:14:23Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
This challenge includes 10,091 patch-level annotations and over 130 million labeled pixels.
First place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919)
arXiv Detail & Related papers (2022-04-13T15:27:05Z) - Lung-Originated Tumor Segmentation from Computed Tomography Scan (LOTUS)
Benchmark [48.30502612686276]
Lung cancer is one of the deadliest cancers, and its effective diagnosis and treatment depend on the accurate delineation of the tumor.
Human-centered segmentation, which is currently the most common approach, is subject to inter-observer variability.
The 2018 VIP Cup started with a global engagement from 42 countries to access the competition data.
In a nutshell, all the algorithms proposed during the competition, are based on deep learning models combined with a false positive reduction technique.
arXiv Detail & Related papers (2022-01-03T03:06:38Z) - Automatic tumour segmentation in H&E-stained whole-slide images of the
pancreas [2.4431235585344475]
We propose a multi-task convolutional neural network to balance disease detection and segmentation accuracy.
We validated our approach on a dataset of 29 patients at different resolutions.
arXiv Detail & Related papers (2021-12-01T22:05:15Z) - DiagSet: a dataset for prostate cancer histopathological image classification [1.5911024228956094]
The proposed dataset consists of over 2.6 million tissue patches extracted from 430 fully annotated scans.
We propose a machine learning framework for detection of cancerous tissue regions and prediction of scan-level diagnosis.
The proposed approach achieves 94.6% accuracy in patch-level recognition and is compared in a scan-level diagnosis with 9 human histopathologists.
arXiv Detail & Related papers (2021-05-09T20:06:25Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
arXiv Detail & Related papers (2020-12-30T20:44:55Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.