論文の概要: Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics
- arxiv url: http://arxiv.org/abs/2408.12609v1
- Date: Thu, 8 Aug 2024 08:33:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 17:12:14.452501
- Title: Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics
- Title(参考訳): 制御推論と状態空間ダイナミクスによるマルチエージェント軌道の高次予測
- Authors: Yu Zhang, Yongxiang Zou, Haoyu Zhang, Zeyu Liu, Houcheng Li, Long Cheng,
- Abstract要約: 本稿では,状態空間動的システムモデリングに基づく軌道予測の新しい手法を提案する。
動的システムにおける状態推定の精度を高めるために,制御変数に対する新しいモデリング手法を提案する。
提案手法は,グラフニューラルネットワークと状態空間モデルを統合し,マルチエージェント相互作用の複雑さを効果的に捉える。
- 参考スコア(独自算出の注目度): 14.694200929205975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of autonomous systems, accurately predicting the trajectories of nearby vehicles and pedestrians is crucial for ensuring both safety and operational efficiency. This paper introduces a novel methodology for trajectory forecasting based on state-space dynamic system modeling, which endows agents with models that have tangible physical implications. To enhance the precision of state estimations within the dynamic system, the paper also presents a novel modeling technique for control variables. This technique utilizes a newly introduced model, termed "Mixed Mamba," to derive initial control states, thereby improving the predictive accuracy of these variables. Moverover, the proposed approach ingeniously integrates graph neural networks with state-space models, effectively capturing the complexities of multi-agent interactions. This combination provides a robust and scalable framework for forecasting multi-agent trajectories across a range of scenarios. Comprehensive evaluations demonstrate that this model outperforms several established benchmarks across various metrics and datasets, highlighting its significant potential to advance trajectory forecasting in autonomous systems.
- Abstract(参考訳): 自律システムの分野では、近隣の車や歩行者の軌道を正確に予測することが安全性と運転効率の両立に不可欠である。
本稿では,状態空間の動的システムモデリングに基づくトラジェクティブ予測手法を提案する。
動的システムにおける状態推定の精度を高めるために,制御変数に対する新しいモデリング手法を提案する。
この手法は"Mixed Mamba"と呼ばれる新しいモデルを用いて初期制御状態の導出を行い、これらの変数の予測精度を向上させる。
提案するアプローチであるMoveroverは、グラフニューラルネットワークと状態空間モデルを統合することによって、マルチエージェントインタラクションの複雑さを効果的にキャプチャする。
この組み合わせは、さまざまなシナリオにわたるマルチエージェントトラジェクトリを予測する、堅牢でスケーラブルなフレームワークを提供する。
総合的な評価は、このモデルが様々なメトリクスやデータセットにまたがるいくつかの確立したベンチマークを上回り、自律システムにおける軌道予測を前進させる大きな可能性を浮き彫りにしていることを示している。
関連論文リスト
- Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction [0.6202955567445396]
本稿では,自律走行のための新しい軌道予測モデルを提案する。
本モデルは,不確実性推定と複雑なエージェント相互作用を組み込むことにより,軌道予測の精度と信頼性を向上させる。
提案モデルでは,実環境における自律走行システムへの応用の可能性を示す。
論文 参考訳(メタデータ) (2024-11-25T15:03:44Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Cheap and Deterministic Inference for Deep State-Space Models of
Interacting Dynamical Systems [38.23826389188657]
本稿では,基礎となる相互作用力学系をモデル化するために,グラフニューラルネットワークを用いた深部状態空間モデルを提案する。
予測分布はマルチモーダルであり、ガウス混合モデルの形をしており、ガウス成分のモーメントは決定論的モーメントマッチングルールによって計算できる。
我々のモーメントマッチングスキームはサンプルのない推論に利用でき、モンテカルロの代替案と比較してより効率的で安定した訓練がもたらされる。
論文 参考訳(メタデータ) (2023-05-02T20:30:23Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
将来の車両軌道予測のためのトランスフォーマーモデルであるLatentFormerを提案する。
提案手法をnuScenesベンチマークデータセット上で評価し,提案手法が最先端性能を実現し,トラジェクトリ指標を最大40%向上することを示す。
論文 参考訳(メタデータ) (2022-03-03T17:44:58Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - Robots State Estimation and Observability Analysis Based on Statistical
Motion Models [10.941793802354953]
本稿では,移動ロボットの動特性(翻訳と回転)を捉える汎用動作モデルを提案する。
このモデルは白色ランダムプロセスによって駆動される統計モデルに基づいており、エラー状態拡張カルマンフィルタリングフレームワーク(ESEKF)に基づく完全な状態推定アルゴリズムに定式化されている。
システム状態の観測不能なサブセットを特徴付けるために、新しいtexttextbfitthin セットの概念が導入された。
論文 参考訳(メタデータ) (2020-10-12T18:35:33Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。