論文の概要: Machine Learning Potentials: A Roadmap Toward Next-Generation Biomolecular Simulations
- arxiv url: http://arxiv.org/abs/2408.12625v1
- Date: Sat, 17 Aug 2024 07:53:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 17:02:13.128043
- Title: Machine Learning Potentials: A Roadmap Toward Next-Generation Biomolecular Simulations
- Title(参考訳): 機械学習の可能性:次世代生体分子シミュレーションへの道のり
- Authors: Gianni De Fabritiis,
- Abstract要約: 機械学習のポテンシャルは、量子化学から粗い粒度のモデルまで、スケールにわたる分子シミュレーションのための革命的で統一的なフレームワークを提供する。
化学生物学および関連分野におけるその変革の可能性を完全に実現するために対処しなければならない重要な課題について論じる。
- 参考スコア(独自算出の注目度): 4.169915659794567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning potentials offer a revolutionary, unifying framework for molecular simulations across scales, from quantum chemistry to coarse-grained models. Here, I explore their potential to dramatically improve accuracy and scalability in simulating complex molecular systems. I discuss key challenges that must be addressed to fully realize their transformative potential in chemical biology and related fields.
- Abstract(参考訳): 機械学習のポテンシャルは、量子化学から粗い粒度のモデルまで、スケールにわたる分子シミュレーションのための革命的で統一的なフレームワークを提供する。
本稿では, 複雑な分子系のシミュレーションにおいて, 精度とスケーラビリティを劇的に向上させる可能性について検討する。
化学生物学および関連分野におけるその変革の可能性を完全に実現するために対処しなければならない重要な課題について論じる。
関連論文リスト
- QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
QH9と呼ばれる新しい量子ハミルトンデータセットを生成し、999または2998の分子動力学軌道に対して正確なハミルトン行列を提供する。
現在の機械学習モデルでは、任意の分子に対するハミルトン行列を予測する能力がある。
論文 参考訳(メタデータ) (2023-06-15T23:39:07Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
本稿では,単純な分子システムから得られた知識をより複雑なものに伝達するための新しい手法を提案する。
我々は、高低自由エネルギー状態の分類に焦点をあてる。
以上の結果より, トリアラニンからデカアラニン系への移行学習において, 0.92 の顕著な AUC が得られた。
論文 参考訳(メタデータ) (2022-05-06T16:21:00Z) - NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic [38.50309739333058]
ニューラルネットワーク電位(NNP)と分子力学(MM)を組み合わせたハイブリッド手法(NNP/MM)の最適化実装を提案する。
このアプローチは、小さな分子のようなシステムの一部をNNPを用いてモデル化し、残りのシステムにMMを用いて効率を向上する。
これにより, シミュレーション速度を5倍に向上し, 複合体毎の1マイクロ秒の同時サンプリングを実現し, この種のシミュレーションで報告された最長のシミュレーションとなった。
論文 参考訳(メタデータ) (2022-01-20T10:57:20Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
分子スピンキューディットは、物質と強く相互作用する光子場の量子力学をシミュレートする理想的なプラットフォームを提供する。
提案した分子量子シミュレータの基本単位は、マイクロ波パルスのみで制御されるスピン1/2とスピン$S$遷移金属イオンの単純な二量体で実現できる。
論文 参考訳(メタデータ) (2021-03-17T15:03:12Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Symmetry-adapted graph neural networks for constructing molecular
dynamics force fields [10.820190246285122]
分子動力学シミュレーションのための力場を自動構築する対称性適応グラフニューラルネットワークフレームワークを開発した。
MDGNNは古典的分子動力学と第一原理分子動力学の両方の結果を正確に再現する。
論文 参考訳(メタデータ) (2021-01-08T09:32:24Z) - TorchMD: A deep learning framework for molecular simulations [0.0]
古典的および機械学習の混合ポテンシャルを持つ分子シミュレーションのためのフレームワークであるTorchMDを提示する。
標準のamber全原子シミュレーションを用いて検証を行い、ab-initioポテンシャルを学習し、エンドツーエンドのトレーニングを行い、最後にタンパク質折り畳みのための粗粒モデルを学習しシミュレーションする。
論文 参考訳(メタデータ) (2020-12-22T15:43:27Z) - Coarse Graining Molecular Dynamics with Graph Neural Networks [3.0279361008741827]
本稿では,粗大な力場の機械学習のためのハイブリッドアーキテクチャを導入し,サブネットワークを介してそれぞれの特徴を学習する。
この枠組みは, 生体分子系における熱力学の再現に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-22T13:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。