論文の概要: Enhancing Vehicle Environmental Awareness via Federated Learning and Automatic Labeling
- arxiv url: http://arxiv.org/abs/2408.12769v1
- Date: Fri, 23 Aug 2024 00:03:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:28:47.753644
- Title: Enhancing Vehicle Environmental Awareness via Federated Learning and Automatic Labeling
- Title(参考訳): フェデレートラーニングと自動ラベリングによる自動車環境意識の向上
- Authors: Chih-Yu Lin, Jin-Wei Liang,
- Abstract要約: 本稿では、画像データと車車間通信データの統合に焦点を当てる。
私たちのゴールは、画像内のメッセージを送信する車両の位置を特定することです。
車両識別問題に対処するために,教師付き学習モデルを用いる。
- 参考スコア(独自算出の注目度): 0.4051523221722474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle environmental awareness is a crucial issue in improving road safety. Through a variety of sensors and vehicle-to-vehicle communication, vehicles can collect a wealth of data. However, to make these data useful, sensor data must be integrated effectively. This paper focuses on the integration of image data and vehicle-to-vehicle communication data. More specifically, our goal is to identify the locations of vehicles sending messages within images, a challenge termed the vehicle identification problem. In this paper, we employ a supervised learning model to tackle the vehicle identification problem. However, we face two practical issues: first, drivers are typically unwilling to share privacy-sensitive image data, and second, drivers usually do not engage in data labeling. To address these challenges, this paper introduces a comprehensive solution to the vehicle identification problem, which leverages federated learning and automatic labeling techniques in combination with the aforementioned supervised learning model. We have validated the feasibility of our proposed approach through experiments.
- Abstract(参考訳): 自動車の環境意識は道路の安全を改善する上で重要な問題である。
さまざまなセンサーと車両間通信によって、車両は豊富なデータを収集できる。
しかし、これらのデータを有用にするためには、センサーデータを効果的に統合する必要がある。
本稿では、画像データと車車間通信データの統合に焦点を当てる。
具体的には、画像内のメッセージを送信する車両の位置を特定することを目的としています。
本稿では,車両識別問題に対処するために,教師付き学習モデルを用いる。
第一に、ドライバは通常、プライバシに敏感なイメージデータを共有したくない、第二に、ドライバは通常、データラベリングに関与しない、という2つの実践的な問題に直面しています。
これらの課題に対処するために、上記の教師付き学習モデルと組み合わせて、フェデレーションラーニングと自動ラベリング技術を活用する車両識別問題に対する包括的解決策を提案する。
提案手法の有効性を実験により検証した。
関連論文リスト
- Towards Infusing Auxiliary Knowledge for Distracted Driver Detection [11.816566371802802]
引き離された運転は世界中の道路事故の主要な原因である。
シーン内のエンティティ間の意味的関係とドライバのポーズの構造的構成に関する補助的知識を注入することで,運転者検出(DDD)の新たな手法であるKiD3を提案する。
具体的には、シーングラフを統合した統合フレームワークを構築し、ドライバが映像フレーム内の視覚的手がかりと情報を合成し、ドライバの行動の全体像を作成する。
論文 参考訳(メタデータ) (2024-08-29T15:28:42Z) - SKoPe3D: A Synthetic Dataset for Vehicle Keypoint Perception in 3D from
Traffic Monitoring Cameras [26.457695296042903]
道路側から見たユニークな合成車両キーポイントデータセットであるSKoPe3Dを提案する。
SKoPe3Dには150万以上の車両インスタンスと490万のキーポイントがある。
実験では、データセットの適用性と、合成データと実世界のデータ間の知識伝達の可能性を強調した。
論文 参考訳(メタデータ) (2023-09-04T02:57:30Z) - Learning Driver Models for Automated Vehicles via Knowledge Sharing and
Personalization [2.07180164747172]
本稿では,自動車間の知識共有とパーソナライゼーションを通じて,自動走行車(AV)ドライバモデルを学習するためのフレームワークについて述べる。
インテリジェントな輸送システム、交通管理、車両間通信など、輸送工学にまたがるいくつかの応用を見出している。
論文 参考訳(メタデータ) (2023-08-31T17:18:15Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset [103.35624417260541]
分散車両調整は、未整備の道路環境において有用である。
我々はバークレーのDeepDrive Droneデータセットを収集し、近くのドライバーが観察する暗黙の「社会的エチケット」を研究する。
このデータセットは、人間のドライバーが採用する分散マルチエージェント計画と、リモートセンシング設定におけるコンピュータビジョンの研究に主に関心がある。
論文 参考訳(メタデータ) (2022-09-19T05:06:57Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Cooperative Perception with Deep Reinforcement Learning for Connected
Vehicles [7.7003495898919265]
本研究では, 周辺物体の検出精度を高めるために, 深層強化学習を用いた協調認識方式を提案する。
本手法は、車両通信網におけるネットワーク負荷を軽減し、通信信頼性を高める。
論文 参考訳(メタデータ) (2020-04-23T01:44:12Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
我々は,4つのパブリックな車両データセットを活用することで,大規模車両データセット(VabyNet)を構築することを提案する。
VehicleNetからより堅牢な視覚表現を学習するための、シンプルで効果的な2段階プログレッシブアプローチを設計する。
AICity Challengeのプライベートテストセットにおいて,最先端の精度86.07%mAPを実現した。
論文 参考訳(メタデータ) (2020-04-14T05:06:38Z) - The Devil is in the Details: Self-Supervised Attention for Vehicle
Re-Identification [75.3310894042132]
車両識別のための自己監督的注意(SAVER)は、車両固有の識別特徴を効果的に学習するための新しいアプローチである。
我々は,SAVERがVeRi, VehicleID, Vehicle-1M, VERI-Wildのデータセットに挑戦する際の最先端性を改善することを示す。
論文 参考訳(メタデータ) (2020-04-14T02:24:47Z) - Improved YOLOv3 Object Classification in Intelligent Transportation
System [29.002873450422083]
高速道路における車両・運転者・人の検出・分類を実現するために, YOLOv3に基づくアルゴリズムを提案する。
モデルは優れた性能を持ち、道路遮断、異なる姿勢、極端な照明に頑丈である。
論文 参考訳(メタデータ) (2020-04-08T11:45:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。