ADROIT: A Self-Supervised Framework for Learning Robust Representations for Active Learning
- URL: http://arxiv.org/abs/2503.07506v1
- Date: Mon, 10 Mar 2025 16:28:04 GMT
- Title: ADROIT: A Self-Supervised Framework for Learning Robust Representations for Active Learning
- Authors: Soumya Banerjee, Vinay Kumar Verma,
- Abstract summary: This paper introduces a unified representation learning framework tailored for active learning with task awareness.<n>It integrates diverse sources, comprising reconstruction, adversarial, self-supervised, knowledge-distillation, and classification losses into a unified VAE-based ADROIT approach.
- Score: 9.89630586942325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning aims to select optimal samples for labeling, minimizing annotation costs. This paper introduces a unified representation learning framework tailored for active learning with task awareness. It integrates diverse sources, comprising reconstruction, adversarial, self-supervised, knowledge-distillation, and classification losses into a unified VAE-based ADROIT approach. The proposed approach comprises three key components - a unified representation generator (VAE), a state discriminator, and a (proxy) task-learner or classifier. ADROIT learns a latent code using both labeled and unlabeled data, incorporating task-awareness by leveraging labeled data with the proxy classifier. Unlike previous approaches, the proxy classifier additionally employs a self-supervised loss on unlabeled data and utilizes knowledge distillation to align with the target task-learner. The state discriminator distinguishes between labeled and unlabeled data, facilitating the selection of informative unlabeled samples. The dynamic interaction between VAE and the state discriminator creates a competitive environment, with the VAE attempting to deceive the discriminator, while the state discriminator learns to differentiate between labeled and unlabeled inputs. Extensive evaluations on diverse datasets and ablation analysis affirm the effectiveness of the proposed model.
Related papers
- Probing Network Decisions: Capturing Uncertainties and Unveiling Vulnerabilities Without Label Information [19.50321703079894]
We present a novel framework to uncover the weakness of the classifier via counterfactual examples.
We test the performance of our prober's misclassification detection and verify its effectiveness on the image classification benchmark datasets.
arXiv Detail & Related papers (2025-03-12T05:05:58Z) - Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.<n>Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.<n>We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - Semi-Supervised Variational Adversarial Active Learning via Learning to Rank and Agreement-Based Pseudo Labeling [6.771578432805963]
Active learning aims to alleviate the amount of labor involved in data labeling by automating the selection of unlabeled samples.
We introduce novel techniques that significantly improve the use of abundant unlabeled data during training.
We demonstrate the superior performance of our approach over the state of the art on various image classification and segmentation benchmark datasets.
arXiv Detail & Related papers (2024-08-23T00:35:07Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.<n>XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.<n>Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
Partial Label Learning (PLL) is a type of weakly supervised learning where each training instance is assigned a set of candidate labels, but only one label is the ground-truth.
This is known as Unreliable Partial Label Learning (UPLL) that introduces an additional complexity due to the inherent unreliability and ambiguity of partial labels.
We propose the Unreliability-Robust Representation Learning framework (URRL) that leverages unreliability-robust contrastive learning to help the model fortify against unreliable partial labels effectively.
arXiv Detail & Related papers (2023-08-31T13:37:28Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2021-11-19T10:15:22Z) - Joint Representation Learning and Novel Category Discovery on Single-
and Multi-modal Data [16.138075558585516]
We present a generic, end-to-end framework to jointly learn a reliable representation and assign clusters to unlabelled data.
We employ Winner-Take-All (WTA) hashing algorithm on the shared representation space to generate pairwise pseudo labels for unlabelled data.
We thoroughly evaluate our framework on large-scale multi-modal video benchmarks Kinetics-400 and VGG-Sound, and image benchmarks CIFAR10, CIFAR100 and ImageNet.
arXiv Detail & Related papers (2021-04-26T15:56:16Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - Learning to Learn in a Semi-Supervised Fashion [41.38876517851431]
We present a novel meta-learning scheme to address semi-supervised learning from both labeled and unlabeled data.
Our strategy can be viewed as a self-supervised learning scheme, which can be applied to fully supervised learning tasks.
arXiv Detail & Related papers (2020-08-25T17:59:53Z) - Self-Supervised Relational Reasoning for Representation Learning [5.076419064097733]
In self-supervised learning, a system is tasked with achieving a surrogate objective by defining alternative targets on unlabeled data.
We propose a novel self-supervised formulation of relational reasoning that allows a learner to bootstrap a signal from information implicit in unlabeled data.
We evaluate the proposed method following a rigorous experimental procedure, using standard datasets, protocols, and backbones.
arXiv Detail & Related papers (2020-06-10T14:24:25Z) - State-Relabeling Adversarial Active Learning [0.0]
Active learning is to design label-efficient algorithms by sampling the most representative samples to be labeled by an oracle.
We propose a state relabeling adversarial active learning model (SRAAL), that leverages both the annotation and the labeled/unlabeled state information.
Our model outperforms the previous state-of-art active learning methods and our initially sampling algorithm achieves better performance.
arXiv Detail & Related papers (2020-04-10T08:23:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.