論文の概要: Robust Predictions with Ambiguous Time Delays: A Bootstrap Strategy
- arxiv url: http://arxiv.org/abs/2408.12801v1
- Date: Fri, 23 Aug 2024 02:38:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:09:18.610243
- Title: Robust Predictions with Ambiguous Time Delays: A Bootstrap Strategy
- Title(参考訳): あいまいな時間遅延を伴うロバスト予測:ブートストラップ戦略
- Authors: Jiajie Wang, Zhiyuan Jerry Lin, Wen Chen,
- Abstract要約: Time Series Model Bootstrap (TSMB) は、時系列モデリングにおいて潜在的に変動または非決定論的な時間遅延を処理するために設計された汎用的なフレームワークである。
TSMBはトレーニングされたモデルの性能を大幅に向上させ、このフレームワークを使って予測する。
- 参考スコア(独自算出の注目度): 5.71557730775514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contemporary data-driven environments, the generation and processing of multivariate time series data is an omnipresent challenge, often complicated by time delays between different time series. These delays, originating from a multitude of sources like varying data transmission dynamics, sensor interferences, and environmental changes, introduce significant complexities. Traditional Time Delay Estimation methods, which typically assume a fixed constant time delay, may not fully capture these variabilities, compromising the precision of predictive models in diverse settings. To address this issue, we introduce the Time Series Model Bootstrap (TSMB), a versatile framework designed to handle potentially varying or even nondeterministic time delays in time series modeling. Contrary to traditional approaches that hinge on the assumption of a single, consistent time delay, TSMB adopts a nonparametric stance, acknowledging and incorporating time delay uncertainties. TSMB significantly bolsters the performance of models that are trained and make predictions using this framework, making it highly suitable for a wide range of dynamic and interconnected data environments.
- Abstract(参考訳): 現代のデータ駆動型環境では、多変量時系列データの生成と処理は、しばしば異なる時系列間の時間遅延によって複雑になる、一様課題である。
これらの遅延は、様々なデータ伝達ダイナミクス、センサー干渉、環境変化など、様々なソースから発生したものであり、重大な複雑さをもたらす。
通常一定時間遅れを仮定する伝統的な時間遅延推定法は、これらの変動を完全に捉えておらず、様々な設定で予測モデルの精度を損なう可能性がある。
この問題に対処するために、時系列モデリングにおいて潜在的に変動する、あるいは非決定論的な時間遅延を扱うように設計された汎用フレームワークである、時系列モデルブートストラップ(TSMB)を紹介します。
単一で一貫した時間遅延を仮定する従来のアプローチとは対照的に、TSMBは非パラメトリックなスタンスを採用し、時間遅延の不確実性を認め、取り入れている。
TSMBはトレーニングされたモデルの性能を大幅に向上させ、このフレームワークを使って予測する。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
TimeDiTは時間依存性学習と確率的サンプリングを組み合わせた拡散トランスフォーマーモデルである。
TimeDiTは、さまざまなタスクにわたるトレーニングと推論プロセスを調和させるために、統一的なマスキングメカニズムを採用している。
我々の体系的評価は、ゼロショット/ファインチューニングによる予測と計算という基本的なタスクにおいて、TimeDiTの有効性を示す。
論文 参考訳(メタデータ) (2024-09-03T22:31:57Z) - Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
パティオ時間予測は輸送、物流、サプライチェーン管理において重要である。
本稿では,従来の予測手法の強みと小言語モデルの命令チューニングを融合した動的マルチモーダル手法を提案する。
我々のフレームワークは、推論速度とデータプライバシ/セキュリティを維持しながら、計算とメモリの要求を低減したオンプレミスのカスタマイズを可能にする。
論文 参考訳(メタデータ) (2024-08-24T16:32:58Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Discovering Predictable Latent Factors for Time Series Forecasting [39.08011991308137]
我々は,観測可能な時系列によって示唆される本質的な潜伏因子を推定するための新しい枠組みを開発する。
予測可能性,充足性,識別性という3つの特性を導入し,これらの特性を強力な潜伏力学モデルを用いてモデル化する。
複数の実データに対する実験結果から, 時系列予測の手法の有効性が示唆された。
論文 参考訳(メタデータ) (2023-03-18T14:37:37Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
時系列予測は科学的・工学的な問題の基本である。
深層学習法はこの問題に適している。
多くの実世界のデータセットにおける標準メトリクスの最先端よりも改善されていることを示す。
論文 参考訳(メタデータ) (2020-02-14T16:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。