Disentangling, Amplifying, and Debiasing: Learning Disentangled Representations for Fair Graph Neural Networks
- URL: http://arxiv.org/abs/2408.12875v1
- Date: Fri, 23 Aug 2024 07:14:56 GMT
- Title: Disentangling, Amplifying, and Debiasing: Learning Disentangled Representations for Fair Graph Neural Networks
- Authors: Yeon-Chang Lee, Hojung Shin, Sang-Wook Kim,
- Abstract summary: We propose a novel GNN framework, DAB-GNN, that Disentangles, Amplifies, and deBiases attribute, structure, and potential biases in the GNN mechanism.
Dab-GNN significantly outperforms ten state-of-the-art competitors in terms of achieving an optimal balance between accuracy and fairness.
- Score: 22.5976413484192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have become essential tools for graph representation learning in various domains, such as social media and healthcare. However, they often suffer from fairness issues due to inherent biases in node attributes and graph structure, leading to unfair predictions. To address these challenges, we propose a novel GNN framework, DAB-GNN, that Disentangles, Amplifies, and deBiases attribute, structure, and potential biases in the GNN mechanism. DAB-GNN employs a disentanglement and amplification module that isolates and amplifies each type of bias through specialized disentanglers, followed by a debiasing module that minimizes the distance between subgroup distributions to ensure fairness. Extensive experiments on five datasets demonstrate that DAB-GNN significantly outperforms ten state-of-the-art competitors in terms of achieving an optimal balance between accuracy and fairness.
Related papers
- Towards Fair Graph Representation Learning in Social Networks [20.823461673845756]
We introduce constraints for fair representation learning based on three principles: sufficiency, independence, and separation.
We theoretically demonstrate that our EAGNN method can effectively achieve group fairness.
arXiv Detail & Related papers (2024-10-15T10:57:02Z) - Rethinking Fair Graph Neural Networks from Re-balancing [26.70771023446706]
We find that simple re-balancing methods can easily match or surpass existing fair GNN methods.
We propose FairGB, Fair Graph Neural Network via re-Balancing, which mitigates the unfairness of GNNs by group balancing.
arXiv Detail & Related papers (2024-07-16T11:39:27Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - MAPPING: Debiasing Graph Neural Networks for Fair Node Classification
with Limited Sensitive Information Leakage [1.8238848494579714]
We propose a novel model-agnostic debiasing framework named MAPPING for fair node classification.
Our results show that MAPPING can achieve better trade-offs between utility and fairness, and privacy risks of sensitive information leakage.
arXiv Detail & Related papers (2024-01-23T14:59:46Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Interpreting Unfairness in Graph Neural Networks via Training Node
Attribution [46.384034587689136]
We study a novel problem of interpreting GNN unfairness through attributing it to the influence of training nodes.
Specifically, we propose a novel strategy named Probabilistic Distribution Disparity (PDD) to measure the bias exhibited in GNNs.
We verify the validity of PDD and the effectiveness of influence estimation through experiments on real-world datasets.
arXiv Detail & Related papers (2022-11-25T21:52:30Z) - FairNorm: Fair and Fast Graph Neural Network Training [9.492903649862761]
Graph neural networks (GNNs) have been demonstrated to achieve state-of-the-art for a number of graph-based learning tasks.
It has been shown that GNNs may inherit and even amplify bias within training data, which leads to unfair results towards certain sensitive groups.
This work proposes FairNorm, a unified normalization framework that reduces the bias in GNN-based learning.
arXiv Detail & Related papers (2022-05-20T06:10:27Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z) - Debiased Graph Neural Networks with Agnostic Label Selection Bias [59.61301255860836]
Most existing Graph Neural Networks (GNNs) are proposed without considering the selection bias in data.
We propose a novel Debiased Graph Neural Networks (DGNN) with a differentiated decorrelation regularizer.
Our proposed model outperforms the state-of-the-art methods and DGNN is a flexible framework to enhance existing GNNs.
arXiv Detail & Related papers (2022-01-19T16:50:29Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Graph Classification by Mixture of Diverse Experts [67.33716357951235]
We present GraphDIVE, a framework leveraging mixture of diverse experts for imbalanced graph classification.
With a divide-and-conquer principle, GraphDIVE employs a gating network to partition an imbalanced graph dataset into several subsets.
Experiments on real-world imbalanced graph datasets demonstrate the effectiveness of GraphDIVE.
arXiv Detail & Related papers (2021-03-29T14:03:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.