Multiple Areal Feature Aware Transportation Demand Prediction
- URL: http://arxiv.org/abs/2408.12890v1
- Date: Fri, 23 Aug 2024 07:51:10 GMT
- Title: Multiple Areal Feature Aware Transportation Demand Prediction
- Authors: Sumin Han, Jisun An, Youngjun Park, Suji Kim, Kitae Jang, Dongman Lee,
- Abstract summary: We propose a novel multi-feature-aware graph convolutional recurrent network (ST-MFGCRN) that fuses multiple areal features during-temproal understanding.
We evaluate the proposed model on two real-world transportation datasets.
- Score: 2.996323123990199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A reliable short-term transportation demand prediction supports the authorities in improving the capability of systems by optimizing schedules, adjusting fleet sizes, and generating new transit networks. A handful of research efforts incorporate one or a few areal features while learning spatio-temporal correlation, to capture similar demand patterns between similar areas. However, urban characteristics are polymorphic, and they need to be understood by multiple areal features such as land use, sociodemographics, and place-of-interest (POI) distribution. In this paper, we propose a novel spatio-temporal multi-feature-aware graph convolutional recurrent network (ST-MFGCRN) that fuses multiple areal features during spatio-temproal understanding. Inside ST-MFGCRN, we devise sentinel attention to calculate the areal similarity matrix by allowing each area to take partial attention if the feature is not useful. We evaluate the proposed model on two real-world transportation datasets, one with our constructed BusDJ dataset and one with benchmark TaxiBJ. Results show that our model outperforms the state-of-the-art baselines up to 7\% on BusDJ and 8\% on TaxiBJ dataset.
Related papers
- Traffic Prediction considering Multiple Levels of Spatial-temporal Information: A Multi-scale Graph Wavelet-based Approach [3.343804744266258]
This study proposes a graph wavelet temporal convolution network (MSGWTCN) to predict the traffic states in complex transportation networks.
Two real-world datasets are used to investigate the model performance, including a highway network in Seattle and a dense road network of Manhattan in New York City.
arXiv Detail & Related papers (2024-06-18T20:05:47Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Exploring Multimodal Sentiment Analysis via CBAM Attention and
Double-layer BiLSTM Architecture [3.9850392954445875]
In our model, we use BERT + BiLSTM as new feature extractor to capture the long-distance dependencies in sentences.
To remove redundant information, CNN and CBAM attention are added after splicing text features and picture features.
The experimental results show that our model achieves a sound effect, similar to the advanced model.
arXiv Detail & Related papers (2023-03-26T12:34:01Z) - Public Transit Arrival Prediction: a Seq2Seq RNN Approach [1.9294297881760765]
Bus arrival time prediction (BATP) is a challenging problem especially in the developing world.
A novel data-driven model based on recurrent neural networks (RNNs) is proposed for BATP (in real-time) in the current work.
arXiv Detail & Related papers (2022-10-04T14:58:12Z) - FuTH-Net: Fusing Temporal Relations and Holistic Features for Aerial
Video Classification [49.06447472006251]
We propose a novel deep neural network, termed FuTH-Net, to model not only holistic features, but also temporal relations for aerial video classification.
Our model is evaluated on two aerial video classification datasets, ERA and Drone-Action, and achieves the state-of-the-art results.
arXiv Detail & Related papers (2022-09-22T21:15:58Z) - Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic
Prediction [1.6449390849183363]
We propose an automated dilated-temporal synchronous graph network prediction named Auto-DSTS for traffic prediction.
Specifically, we propose an automated dilated-temporal-temporal graph (Auto-DSTS) module to capture the short-term and long-term-temporal correlations.
Our model can achieve about 10% improvements compared with the state-of-art methods.
arXiv Detail & Related papers (2022-07-22T00:50:39Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - Real-Time Forecasting of Dockless Scooter-Sharing Demand: A
Spatio-Temporal Multi-Graph Transformer Approach [5.6973480878880824]
This paper proposes a novel deep learning architecture named S-Temporal Multi-Graph Transformer (S-TMGT) to forecast real-time dockless scooter-sharing demand.
The proposed model can help the micromobility operators develop optimal vehicle rebalancing schemes and guide cities to better manage dockless scooter-sharing operations.
arXiv Detail & Related papers (2021-11-02T03:48:48Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - FMA-ETA: Estimating Travel Time Entirely Based on FFN With Attention [88.33372574562824]
We propose a novel framework based on feed-forward network (FFN) for ETA, FFN with Multi-factor self-Attention (FMA-ETA)
The novel Multi-factor self-attention mechanism is proposed to deal with different category features and aggregate the information purposefully.
Experiments show FMA-ETA is competitive with state-of-the-art methods in terms of the prediction accuracy with significantly better inference speed.
arXiv Detail & Related papers (2020-06-07T08:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.