論文の概要: Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations
- arxiv url: http://arxiv.org/abs/2408.12935v1
- Date: Fri, 23 Aug 2024 09:33:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:40:04.884770
- Title: Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations
- Title(参考訳): 信頼できる、責任があり、安全なAI: チャレンジと軽減を伴うAI安全のための総合的なアーキテクチャフレームワーク
- Authors: Chen Chen, Ziyao Liu, Weifeng Jiang, Goh Si Qi, KwoK-Yan Lam,
- Abstract要約: AI安全性は、AIシステムの安全な採用とデプロイにおいて重要な領域である。
私たちの目標は、AI安全研究の進歩を促進し、究極的には、デジタルトランスフォーメーションに対する人々の信頼を高めることです。
- 参考スコア(独自算出の注目度): 14.150792596344674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI Safety is an emerging area of critical importance to the safe adoption and deployment of AI systems. With the rapid proliferation of AI and especially with the recent advancement of Generative AI (or GAI), the technology ecosystem behind the design, development, adoption, and deployment of AI systems has drastically changed, broadening the scope of AI Safety to address impacts on public safety and national security. In this paper, we propose a novel architectural framework for understanding and analyzing AI Safety; defining its characteristics from three perspectives: Trustworthy AI, Responsible AI, and Safe AI. We provide an extensive review of current research and advancements in AI safety from these perspectives, highlighting their key challenges and mitigation approaches. Through examples from state-of-the-art technologies, particularly Large Language Models (LLMs), we present innovative mechanism, methodologies, and techniques for designing and testing AI safety. Our goal is to promote advancement in AI safety research, and ultimately enhance people's trust in digital transformation.
- Abstract(参考訳): AI安全性は、AIシステムの安全な採用とデプロイにおいて重要な領域である。
AIの急速な普及、特に最近のジェネレーティブAI(またはGAI)の進歩により、AIシステムの設計、開発、導入、デプロイを支える技術エコシステムは大きく変化し、公安と国家安全保障への影響に対処するAI安全の範囲が拡大した。
本稿では,AI安全性の理解と分析のための新しいアーキテクチャフレームワークを提案し,その特徴を3つの観点から定義する。
これらの観点から、AIの安全性に関する現在の研究と進歩を幅広くレビューし、主要な課題と緩和アプローチを強調します。
最先端技術、特にLarge Language Models(LLM)の例を通して、AI安全性を設計、テストするための革新的なメカニズム、方法論、技術を提示します。
私たちの目標は、AI安全研究の進歩を促進し、究極的には、デジタルトランスフォーメーションに対する人々の信頼を高めることです。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Standardization Trends on Safety and Trustworthiness Technology for Advanced AI [0.0]
大規模言語モデルと基礎モデルに基づく最近のAI技術は、人工知能に近づいたり、超えたりしている。
これらの進歩は、高度なAIの安全性と信頼性に関する懸念を引き起こしている。
AIの安全性と信頼性を確保するため、国際的に合意された標準を開発するための努力が実施されている。
論文 参考訳(メタデータ) (2024-10-29T15:50:24Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
近年、ほとんどのAIモデルは高度なハッキング技術に弱い。
この課題は、敵AIの研究努力を共同で進めるきっかけとなった。
我々は、AIアプリケーションに対する敵攻撃を実証する総合的なサイバーセキュリティレビューを提示する。
論文 参考訳(メタデータ) (2021-02-09T06:06:13Z) - TanksWorld: A Multi-Agent Environment for AI Safety Research [5.218815947097599]
複雑なタスクを実行できる人工知能を作成する能力は、AI対応システムの安全かつ確実な運用を保証する能力を急速に上回っている。
AIの安全性リスクを示す最近のシミュレーション環境は、特定の問題に比較的単純または狭く焦点を絞っている。
我々は,3つの重要な側面を持つAI安全研究環境として,AI安全タンクワールドを紹介した。
論文 参考訳(メタデータ) (2020-02-25T21:00:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。