論文の概要: Measuring Code Efficiency Optimization Capabilities with ACEOB
- arxiv url: http://arxiv.org/abs/2408.12960v1
- Date: Fri, 23 Aug 2024 10:10:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:30:07.857780
- Title: Measuring Code Efficiency Optimization Capabilities with ACEOB
- Title(参考訳): A CEOBによるコード効率最適化能力の測定
- Authors: Yue Pan, Xiuting Shao, Chen Lyu,
- Abstract要約: モデルトレーニングデータセットの「コードパターン」を詳細に分析し、人間の手書きコードを慎重に探索する。
95,359組の効率非効率コードからなる自動コード効率最適化ベンチマーク(ACEOB)を導入する。
私たちの知る限り、ACEOBはPythonコードの効率最適化に特化した最初のデータセットです。
- 参考スコア(独自算出の注目度): 7.4056083791645495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Moore's Law gains diminish, software performance and efficiency become increasingly vital. Optimizing code efficiency is challenging, even for professional programmers. However, related research remains relatively scarce, and rigorously assessing models' abilities to optimize code efficiency is fraught with difficulties. In response to this challenge, we first conduct an in-depth analysis of "code patterns" in the model training dataset, meticulously exploring human-written code. Secondly, we define a task for optimizing code efficiency and introduce the Automatic Code Efficiency Optimization Benchmark (ACEOB), which consists of 95,359 pairs of efficient-inefficient code aimed at assessing code efficiency optimization capabilities. To our knowledge, ACEOB is the first dataset specifically targeting Python code efficiency optimization. To evaluate models' ability in optimizing code efficiency, we propose two new metrics: the Isomorphic Optimal Comparison CodeBLEU (IOCCB) metric and the Normalized Performance Index (NPI) metric, to assess the efficiency of model-generated code. We also evaluate several advanced code models, such as PolyCoder and CodeT5, after fine-tuning them on ACEOB and demonstrate that the efficiency of each model improves after introducing the NPI filter. However, it was observed that even ChatGPT does not perform optimally in code efficiency optimization tasks.
- Abstract(参考訳): ムーアの法則が向上するにつれて、ソフトウェアの性能と効率性はますます重要になっている。
プロのプログラマにとっても、コードの効率を最適化することは難しい。
しかし、関連する研究は比較的少ないままであり、コードの効率を最適化するモデルの能力を厳格に評価することは困難である。
この課題に対応するために、まずモデルトレーニングデータセットで「コードパターン」の詳細な分析を行い、人間の手書きコードを慎重に探索する。
次に、コード効率を最適化するタスクを定義し、コード効率最適化機能の評価を目的とした95,359組の効率非効率コードからなる自動コード効率最適化ベンチマーク(ACEOB)を導入する。
私たちの知る限り、ACEOBはPythonコードの効率最適化に特化した最初のデータセットです。
コード効率を最適化するモデルの能力を評価するために,Isomorphic Optimal Comparison CodeBLEU(IOCCB)メトリックと正規化性能指標(NPI)メトリックという2つの新しい指標を提案し,モデル生成コードの効率を評価する。
また、A CEOBで微調整した後、PolyCoderやCodeT5といった先進的なコードモデルを評価し、NPIフィルタを導入して、各モデルの効率が向上することを示した。
しかし,ChatGPTでもコード効率最適化タスクでは最適に動作しないことがわかった。
関連論文リスト
- Effi-Code: Unleashing Code Efficiency in Language Models [17.355845751737423]
Effi-Codeは、大規模言語モデルにおけるコード生成を強化するアプローチである。
Effi-Codeは、AIシステムのコード生成を改善するためのスケーラブルで汎用的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-10-14T07:05:51Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - Evaluating Language Models for Efficient Code Generation [13.175840119811]
大規模言語モデル(LLM)を確実に評価するための微分性能評価(DPE)を導入する。
DPEは、効率を要求するプログラミングタスクに焦点を当て、パフォーマンス評価のための洞察に富んだ複合メトリクスを確立する。
概念実証として、私たちはDPEを使用して、121のコードタスクのパフォーマンスを満足させるベンチマークであるEvalPerfを作成します。
論文 参考訳(メタデータ) (2024-08-12T18:59:13Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
大規模言語モデル(LLM)は、幅広いプログラミングタスクを解く上で強力な能力を示している。
本稿では,パフォーマンス向上に着目したコード最適化について検討する。
論文 参考訳(メタデータ) (2024-06-17T16:10:10Z) - How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark [39.13045037676502]
大規模言語モデル(LLM)の開発は、プログラム合成のフロンティアを著しく押し上げている。
ほとんどの評価フレームワークは生成したコードの(機能的な)正しさに重点を置いています。
我々は,LLMの効率的なコード生成能力を評価するための厳格で高水準なベンチマークENAMELを開発した。
論文 参考訳(メタデータ) (2024-06-10T04:19:20Z) - Lower-Left Partial AUC: An Effective and Efficient Optimization Metric
for Recommendation [52.45394284415614]
我々は,AUCのように計算効率が良く,Top-Kランキングの指標と強く相関する新しい最適化指標であるLLPAUCを提案する。
LLPAUCはローワーレフト角のROC曲線の下の部分領域のみを考慮し、最適化はトップKに焦点をあてる。
論文 参考訳(メタデータ) (2024-02-29T13:58:33Z) - Judging Adam: Studying the Performance of Optimization Methods on ML4SE
Tasks [2.8961929092154697]
ソースコードの深層学習モデルを用いて各種の性能を検証した。
Anaheadの選択は、モデルの品質に大きな影響を与えます。
ML4SEコミュニティは、コード関連のディープラーニングタスクのデフォルトとして、Adamを使うべきだ、と提案する。
論文 参考訳(メタデータ) (2023-03-06T22:49:20Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
本稿では,予測効率とトレーニング効率の両面において,モデルを協調最適化するための統一ベイズ最適化フレームワークを提案する。
レコメンデーションタスクのためのモデル選択の実験は、この方法で選択されたモデルがモデルのトレーニング効率を大幅に改善することを示している。
論文 参考訳(メタデータ) (2020-08-02T02:56:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。