A Survey on Drowsiness Detection -- Modern Applications and Methods
- URL: http://arxiv.org/abs/2408.12990v1
- Date: Fri, 23 Aug 2024 11:15:21 GMT
- Title: A Survey on Drowsiness Detection -- Modern Applications and Methods
- Authors: Biying Fu, Fadi Boutros, Chin-Teng Lin, Naser Damer,
- Abstract summary: Drowsiness detection holds paramount importance in ensuring safety in workplaces or behind the wheel.
This comprehensive review explores the significance of drowsiness detection in various areas of application.
- Score: 29.367684013050916
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Drowsiness detection holds paramount importance in ensuring safety in workplaces or behind the wheel, enhancing productivity, and healthcare across diverse domains. Therefore accurate and real-time drowsiness detection plays a critical role in preventing accidents, enhancing safety, and ultimately saving lives across various sectors and scenarios. This comprehensive review explores the significance of drowsiness detection in various areas of application, transcending the conventional focus solely on driver drowsiness detection. We delve into the current methodologies, challenges, and technological advancements in drowsiness detection schemes, considering diverse contexts such as public transportation, healthcare, workplace safety, and beyond. By examining the multifaceted implications of drowsiness, this work contributes to a holistic understanding of its impact and the crucial role of accurate and real-time detection techniques in enhancing safety and performance. We identified weaknesses in current algorithms and limitations in existing research such as accurate and real-time detection, stable data transmission, and building bias-free systems. Our survey frames existing works and leads to practical recommendations like mitigating the bias issue by using synthetic data, overcoming the hardware limitations with model compression, and leveraging fusion to boost model performance. This is a pioneering work to survey the topic of drowsiness detection in such an entirely and not only focusing on one single aspect. We consider the topic of drowsiness detection as a dynamic and evolving field, presenting numerous opportunities for further exploration.
Related papers
- Real-Time Drowsiness Detection Using Eye Aspect Ratio and Facial Landmark Detection [0.0]
This study presents a real-time system designed to detect drowsiness using the Eye Aspect Ratio (EAR) and facial landmark detection techniques.
By establishing a threshold for the EAR, the system identifies when eyes are closed, indicating potential drowsiness.
Experiments show that the system reliably detects drowsiness with high accuracy while maintaining low computational demands.
arXiv Detail & Related papers (2024-08-11T17:34:24Z) - Pedestrian Detection in Low-Light Conditions: A Comprehensive Survey [2.961140343595394]
Pedestrian detection remains a critical problem in various domains, such as computer vision, surveillance, and autonomous driving.
This paper aims to comprehensively survey various pedestrian detection approaches, baselines, and datasets that specifically target low-light conditions.
arXiv Detail & Related papers (2024-01-15T16:13:17Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
We explore advanced Large Language Models (LLMs) and their specialized variants, contributing to this field in several ways.
We uncover a significant correlation between topics and detection performance.
These investigations shed light on the adaptability and robustness of these detection methods across diverse topics.
arXiv Detail & Related papers (2023-12-20T10:53:53Z) - The Last Decade in Review: Tracing the Evolution of Safety Assurance
Cases through a Comprehensive Bibliometric Analysis [7.431812376079826]
Safety assurance is of paramount importance across various domains, including automotive, aerospace, and nuclear energy.
The use of safety assurance cases allows for verifying the correctness of the created systems capabilities, preventing system failure.
arXiv Detail & Related papers (2023-11-13T17:34:23Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
Forgetting refers to the loss or deterioration of previously acquired knowledge.
Forgetting is a prevalent phenomenon observed in various other research domains within deep learning.
arXiv Detail & Related papers (2023-07-16T16:27:58Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
Anomaly detection can now rely on measurements sampled at a very high frequency.
It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets.
arXiv Detail & Related papers (2022-01-13T18:20:32Z) - Generalized Out-of-Distribution Detection: A Survey [83.0449593806175]
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems.
Several other problems, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD) are closely related to OOD detection.
We first present a unified framework called generalized OOD detection, which encompasses the five aforementioned problems.
arXiv Detail & Related papers (2021-10-21T17:59:41Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
arXiv Detail & Related papers (2020-10-27T09:56:16Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
We present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition.
We first introduce the multi-modality of the sensory data and provide information for public datasets.
We then propose a new taxonomy to structure the deep methods by challenges.
arXiv Detail & Related papers (2020-01-21T09:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.