The Last Decade in Review: Tracing the Evolution of Safety Assurance
Cases through a Comprehensive Bibliometric Analysis
- URL: http://arxiv.org/abs/2311.07495v1
- Date: Mon, 13 Nov 2023 17:34:23 GMT
- Title: The Last Decade in Review: Tracing the Evolution of Safety Assurance
Cases through a Comprehensive Bibliometric Analysis
- Authors: Mithila Sivakumar, Alvine Boaye Belle, Jinjun Shan, Opeyemi Adesina,
Song Wang, Marsha Chechik, Marios Fokaefs, Kimya Khakzad Shahandashti,
Oluwafemi Odu
- Abstract summary: Safety assurance is of paramount importance across various domains, including automotive, aerospace, and nuclear energy.
The use of safety assurance cases allows for verifying the correctness of the created systems capabilities, preventing system failure.
- Score: 7.431812376079826
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Safety assurance is of paramount importance across various domains, including
automotive, aerospace, and nuclear energy, where the reliability and
acceptability of mission-critical systems are imperative. This assurance is
effectively realized through the utilization of Safety Assurance Cases. The use
of safety assurance cases allows for verifying the correctness of the created
systems capabilities, preventing system failure. The latter may result in loss
of life, severe injuries, large-scale environmental damage, property
destruction, and major economic loss. Still, the emergence of complex
technologies such as cyber-physical systems (CPSs), characterized by their
heterogeneity, autonomy, machine learning capabilities, and the uncertainty of
their operational environments poses significant challenges for safety
assurance activities. Several papers have tried to propose solutions to tackle
these challenges, but to the best of our knowledge, no secondary study
investigates the trends, patterns, and relationships characterizing the safety
case scientific literature. This makes it difficult to have a holistic view of
the safety case landscape and to identify the most promising future research
directions. In this paper, we, therefore, rely on state-of-the-art bibliometric
tools(e.g., VosViewer) to conduct a bibliometric analysis that allows us to
generate valuable insights, identify key authors and venues, and gain a birds
eye view of the current state of research in the safety assurance area. By
revealing knowledge gaps and highlighting potential avenues for future
research, our analysis provides an essential foundation for researchers,
corporate safety analysts, and regulators seeking to embrace or enhance safety
practices that align with their specific needs and objectives.
Related papers
- Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
We propose an empirical foundation for developing more meaningful safety metrics and define AI safety in a machine learning research context.
We aim to provide a more rigorous framework for AI safety research, advancing the science of safety evaluations and clarifying the path towards measurable progress.
arXiv Detail & Related papers (2024-07-31T17:59:24Z) - Critical Infrastructure Security: Penetration Testing and Exploit Development Perspectives [0.0]
This paper reviews literature on critical infrastructure security, focusing on penetration testing and exploit development.
Findings of this paper reveal inherent vulnerabilities in critical infrastructure and sophisticated threats posed by cyber adversaries.
The review underscores the necessity of continuous and proactive security assessments.
arXiv Detail & Related papers (2024-07-24T13:17:07Z) - Cross-Modality Safety Alignment [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.
To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.
Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - Sok: Comprehensive Security Overview, Challenges, and Future Directions of Voice-Controlled Systems [10.86045604075024]
The integration of Voice Control Systems into smart devices accentuates the importance of their security.
Current research has uncovered numerous vulnerabilities in VCS, presenting significant risks to user privacy and security.
This study introduces a hierarchical model structure for VCS, providing a novel lens for categorizing and analyzing existing literature in a systematic manner.
We classify attacks based on their technical principles and thoroughly evaluate various attributes, such as their methods, targets, vectors, and behaviors.
arXiv Detail & Related papers (2024-05-27T12:18:46Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - I came, I saw, I certified: some perspectives on the safety assurance of
cyber-physical systems [5.9395940943056384]
Execution failure of cyber-physical systems could result in loss of life, severe injuries, large-scale environmental damage, property destruction, and major economic loss.
It is often mandatory to develop compelling assurance cases to support that justification and allow regulatory bodies to certify such systems.
We explore challenges related to such assurance enablers and outline some potential directions that could be explored to tackle them.
arXiv Detail & Related papers (2024-01-30T00:06:16Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
This survey presents a framework for safety research pertaining to large models.
We begin by introducing safety issues of wide concern, then delve into safety evaluation methods for large models.
We explore the strategies for enhancing large model safety from training to deployment.
arXiv Detail & Related papers (2023-02-18T09:32:55Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.