Empirical Power of Quantum Encoding Methods for Binary Classification
- URL: http://arxiv.org/abs/2408.13109v1
- Date: Fri, 23 Aug 2024 14:34:57 GMT
- Title: Empirical Power of Quantum Encoding Methods for Binary Classification
- Authors: Gennaro De Luca, Andrew Vlasic, Michael Vitz, Anh Pham,
- Abstract summary: We will focus on encoding schemes and their effects on various machine learning metrics.
Specifically, we focus on real-world data encoding to demonstrate differences between quantum encoding strategies for several real-world datasets.
- Score: 0.2118773996967412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning is one of the many potential applications of quantum computing, each of which is hoped to provide some novel computational advantage. However, quantum machine learning applications often fail to outperform classical approaches on real-world classical data. The ability of these models to generalize well from few training data points is typically considered one of the few definitive advantages of this approach. In this work, we will instead focus on encoding schemes and their effects on various machine learning metrics. Specifically, we focus on real-world data encoding to demonstrate differences between quantum encoding strategies for several real-world datasets and the classification model standard, LightGBM. In particular, we apply the following encoding strategies, including three standard approaches and two modified approaches: Angle, Amplitude, IQP, Entangled Angle, and Alternative IQP. As these approaches require either a significant number of qubits or gates to encode larger datasets, we perform feature selection to support the limited computing power of quantum simulators. This feature selection is performed through a quantum annealing enhanced approach that builds on a QUBO formulation of the problem. In this work, we provide a preliminary demonstration that quantum machine learning with the IQP encoding and LightGBM produce statistically equivalent results for a large majority of the assigned learning tasks.
Related papers
- Comparing Quantum Encoding Techniques [0.0]
This study explores the encoding methods, specifically in the context of hybrid quantum-classical machine learning.
Using the QuClassi quantum neural network architecture to perform binary classification of the 3' and 6' digits from the MNIST datasets, this study obtains several metrics such as accuracy, entropy, loss, and resistance to noise.
arXiv Detail & Related papers (2024-10-11T00:14:31Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
We develop and study three quantum machine learning applications suitable for NISQ computers.
These algorithms are variational in nature and use parameterised quantum circuits (PQCs) as the underlying quantum machine learning model.
We propose a variational algorithm in the area of approximate quantum cloning, where the data becomes quantum in nature.
arXiv Detail & Related papers (2022-05-19T09:26:57Z) - Quantum Neuron with Separable-State Encoding [0.0]
It is not yet possible to test advanced quantum neuron models on a large scale in currently available quantum processors.
We propose a quantum perceptron (QP) model that uses a reduced number of multi-qubit gates.
We demonstrate the performance of the proposed model by implementing a few qubits version of the QP in a simulated quantum computer.
arXiv Detail & Related papers (2022-02-16T19:26:23Z) - Entangled Datasets for Quantum Machine Learning [0.0]
We argue that one should instead employ quantum datasets composed of quantum states.
We show how a quantum neural network can be trained to generate the states in the NTangled dataset.
We also consider an alternative entanglement-based dataset, which is scalable and is composed of states prepared by quantum circuits.
arXiv Detail & Related papers (2021-09-08T02:20:13Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Efficient Discrete Feature Encoding for Variational Quantum Classifier [3.7576442570677253]
Variational quantum classification (VQC) is one of such methods with possible quantum advantage.
We introduce the use of quantum random-access coding (QRAC) to map discrete features efficiently into limited number of qubits for VQC.
We experimentally show that QRAC can help speeding up the training of VQC by reducing its parameters via saving on the number of qubits for the mapping.
arXiv Detail & Related papers (2020-05-29T04:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.