Efficient Discrete Feature Encoding for Variational Quantum Classifier
- URL: http://arxiv.org/abs/2005.14382v2
- Date: Fri, 12 Nov 2021 00:30:34 GMT
- Title: Efficient Discrete Feature Encoding for Variational Quantum Classifier
- Authors: Hiroshi Yano, Yudai Suzuki, Kohei M. Itoh, Rudy Raymond, and Naoki
Yamamoto
- Abstract summary: Variational quantum classification (VQC) is one of such methods with possible quantum advantage.
We introduce the use of quantum random-access coding (QRAC) to map discrete features efficiently into limited number of qubits for VQC.
We experimentally show that QRAC can help speeding up the training of VQC by reducing its parameters via saving on the number of qubits for the mapping.
- Score: 3.7576442570677253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent days have witnessed significant interests in applying quantum-enhanced
techniques for solving a variety of machine learning tasks. Variational methods
that use quantum resources of imperfect quantum devices with the help of
classical computing techniques are popular for supervised learning. Variational
quantum classification (VQC) is one of such methods with possible quantum
advantage in using quantum-enhanced features that are hard to compute by
classical methods. Its performance depends on the mapping of classical features
into a quantum-enhanced feature space. Although there have been many
quantum-mapping functions proposed so far, there is little discussion on
efficient mapping of discrete features, such as age group, zip code, and
others, which are often significant for classifying datasets of interest. We
first introduce the use of quantum random-access coding (QRAC) to map such
discrete features efficiently into limited number of qubits for VQC. In
numerical simulations, we present a range of encoding strategies and
demonstrate their limitations and capabilities. We experimentally show that
QRAC can help speeding up the training of VQC by reducing its parameters via
saving on the number of qubits for the mapping. We confirm the effectiveness of
the QRAC in VQC by experimenting on classification of real-world datasets with
both simulators and real quantum devices.
Related papers
- Empirical Power of Quantum Encoding Methods for Binary Classification [0.2118773996967412]
We will focus on encoding schemes and their effects on various machine learning metrics.
Specifically, we focus on real-world data encoding to demonstrate differences between quantum encoding strategies for several real-world datasets.
arXiv Detail & Related papers (2024-08-23T14:34:57Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Benchmarking quantum machine learning kernel training for classification tasks [0.0]
This work performs a benchmark study of Quantum Kernel Estimation (QKE) and Quantum Kernel Training (QKT) with a focus on classification tasks.
Two quantum feature mappings, namely ZZFeatureMap and CovariantFeatureMap, are analyzed in this context.
Experimental results indicate that quantum methods exhibit varying performance across different datasets.
arXiv Detail & Related papers (2024-08-17T10:53:06Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
arXiv Detail & Related papers (2022-11-08T18:36:25Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
Variational Quantum Algorithm (VQA) shows a gain of performance in balanced accuracy with the LDA technique.
Current quantum computers are noisy and have few qubits to test, making it difficult to demonstrate the current and potential quantum advantage of QML methods.
arXiv Detail & Related papers (2022-08-28T16:58:37Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
We show how to map discrete features with fewer quantum bits using Quantum Random Access Coding (QRAC)
We propose a new method to embed discrete features with trainable quantum circuits by combining QRAC and a recently proposed strategy for training quantum feature map called quantum metric learning.
arXiv Detail & Related papers (2021-06-17T12:02:01Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.