論文の概要: Causal machine learning for sustainable agroecosystems
- arxiv url: http://arxiv.org/abs/2408.13155v1
- Date: Fri, 23 Aug 2024 15:25:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 14:41:09.623318
- Title: Causal machine learning for sustainable agroecosystems
- Title(参考訳): 持続可能な農業生態系のための因果機械学習
- Authors: Vasileios Sitokonstantinou, Emiliano Díaz Salas Porras, Jordi Cerdà Bautista, Maria Piles, Ioannis Athanasiadis, Hannah Kerner, Giulia Martini, Lily-belle Sweet, Ilias Tsoumas, Jakob Zscheischler, Gustau Camps-Valls,
- Abstract要約: 予測機械学習(ML)は、収量予測や天気予報といった応用のために持続可能な農業に活用されている。
本稿では,MLのデータ処理と因果関係を融合した因果関係MLを提案する。
農家、政策立案者、研究者など、アグリフードチェーン全体の利害関係者に利益をもたらす8つの多様なアプリケーションを通じて因果MLを紹介します。
- 参考スコア(独自算出の注目度): 10.052864559362254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a changing climate, sustainable agriculture is essential for food security and environmental health. However, it is challenging to understand the complex interactions among its biophysical, social, and economic components. Predictive machine learning (ML), with its capacity to learn from data, is leveraged in sustainable agriculture for applications like yield prediction and weather forecasting. Nevertheless, it cannot explain causal mechanisms and remains descriptive rather than prescriptive. To address this gap, we propose causal ML, which merges ML's data processing with causality's ability to reason about change. This facilitates quantifying intervention impacts for evidence-based decision-making and enhances predictive model robustness. We showcase causal ML through eight diverse applications that benefit stakeholders across the agri-food chain, including farmers, policymakers, and researchers.
- Abstract(参考訳): 気候変動の中では、持続可能な農業は食料安全保障と環境衛生にとって不可欠である。
しかし、その生物学的、社会的、経済的要素間の複雑な相互作用を理解することは困難である。
データから学習する能力を持つ予測機械学習(ML)は、収量予測や天気予報といった応用のために持続可能な農業に活用されている。
それにもかかわらず、因果的メカニズムを説明することはできず、規範的ではなく記述的のままである。
このギャップに対処するために、我々は、MLのデータ処理と因果関係が変化を推論する能力とを融合した因果関係MLを提案する。
これは証拠に基づく意思決定に対する介入の影響の定量化を促進し、予測モデルの堅牢性を高める。
農家、政策立案者、研究者など、アグリフードチェーン全体の利害関係者に利益をもたらす8つの多様なアプリケーションを通じて因果MLを紹介します。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues [6.0460261046732455]
食品生産は重要な世界的関心事であり、人工知能(AI)による農業革命の可能性はほとんど解明されていない。
本稿では,農業における機械学習(ML)の適用に焦点をあてた総合的なレビューを行い,農業実践におけるその変革的ポテンシャルと効率向上を探求する。
論文 参考訳(メタデータ) (2024-05-23T17:53:31Z) - Overcoming LLM Challenges using RAG-Driven Precision in Coffee Leaf Disease Remediation [0.0]
本研究は、病気の識別にYOLOv8を、コンテキスト認識診断にRAG(Retrieval Augmented Generation)を応用した、革新的なAI駆動型精密農業システムを提案する。
このシステムは、言語モデル(LLM)に関連する固有の制約に対処するために、洗練されたオブジェクト検出技術と言語モデルを統合する。
論文 参考訳(メタデータ) (2024-05-02T14:19:25Z) - Intelligent Agricultural Greenhouse Control System Based on Internet of
Things and Machine Learning [0.0]
本研究は,モノのインターネット(IoT)と機械学習の融合に根ざした,高度な農業用温室制御システムを概念化し,実行しようとする試みである。
その結果、作物の生育効率と収量が向上し、資源の浪費が減少する。
論文 参考訳(メタデータ) (2024-02-14T09:07:00Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Towards a methodology to consider the environmental impacts of digital agriculture [0.0]
農業は地球温暖化に影響を及ぼすが、その収量には脅威があり、情報通信技術(ICT)は、この緊張を和らげるための潜在的なレバーとみなされることが多い。
本研究の目的は,農業ICTシステムの環境フットプリントと必要なインフラを考慮に入れた方法論を定義することである。
論文 参考訳(メタデータ) (2023-05-16T07:58:34Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z) - DeepAg: Deep Learning Approach for Measuring the Effects of Outlier
Events on Agricultural Production and Policy [4.800161917503703]
我々は,econometricsを用いた新しいフレームワーク,すなわちDeepAgを提案し,Deep Learning (DL) を用いた異常事象検出の効果を測定した。
我々は,Long Short-Term Memory(LSTM)ネットワークと呼ばれるDL技術を用いて商品生産を高精度に予測する。
本稿では,公共政策に対するDeepAgの影響,政策立案者や農家への洞察,農業生態系における経営決定について述べる。
論文 参考訳(メタデータ) (2021-10-22T20:55:33Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。