論文の概要: Overcoming LLM Challenges using RAG-Driven Precision in Coffee Leaf Disease Remediation
- arxiv url: http://arxiv.org/abs/2405.01310v1
- Date: Thu, 2 May 2024 14:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 16:24:55.040958
- Title: Overcoming LLM Challenges using RAG-Driven Precision in Coffee Leaf Disease Remediation
- Title(参考訳): コーヒーリーフ病治療におけるRAG-Driven Precisionを用いたLCM課題の克服
- Authors: Dr. Selva Kumar S, Afifah Khan Mohammed Ajmal Khan, Imadh Ajaz Banday, Manikantha Gada, Vibha Venkatesh Shanbhag,
- Abstract要約: 本研究は、病気の識別にYOLOv8を、コンテキスト認識診断にRAG(Retrieval Augmented Generation)を応用した、革新的なAI駆動型精密農業システムを提案する。
このシステムは、言語モデル(LLM)に関連する固有の制約に対処するために、洗練されたオブジェクト検出技術と言語モデルを統合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research introduces an innovative AI-driven precision agriculture system, leveraging YOLOv8 for disease identification and Retrieval Augmented Generation (RAG) for context-aware diagnosis. Focused on addressing the challenges of diseases affecting the coffee production sector in Karnataka, The system integrates sophisticated object detection techniques with language models to address the inherent constraints associated with Large Language Models (LLMs). Our methodology not only tackles the issue of hallucinations in LLMs, but also introduces dynamic disease identification and remediation strategies. Real-time monitoring, collaborative dataset expansion, and organizational involvement ensure the system's adaptability in diverse agricultural settings. The effect of the suggested system extends beyond automation, aiming to secure food supplies, protect livelihoods, and promote eco-friendly farming practices. By facilitating precise disease identification, the system contributes to sustainable and environmentally conscious agriculture, reducing reliance on pesticides. Looking to the future, the project envisions continuous development in RAG-integrated object detection systems, emphasizing scalability, reliability, and usability. This research strives to be a beacon for positive change in agriculture, aligning with global efforts toward sustainable and technologically enhanced food production.
- Abstract(参考訳): 本研究は、病気の識別にYOLOv8を、コンテキスト認識診断にRAG(Retrieval Augmented Generation)を応用した、革新的なAI駆動型精密農業システムを提案する。
カルナタカのコーヒー生産セクターに影響を及ぼす病気に対処することに焦点を当て,言語モデルと高度なオブジェクト検出技術を統合し,Large Language Models (LLMs) に関連する固有の制約に対処する。
本手法は, LLMの幻覚問題に対処するだけでなく, 動的疾患の同定と治療戦略も導入する。
リアルタイム監視、協調データセット拡張、組織的関与により、多様な農業環境におけるシステムの適応性が保証される。
提案システムの効果は、自動化を超えて、食料供給の確保、生活保護、環境に優しい農業の実践を促進することを目的としている。
病気の正確な識別を容易にすることにより、このシステムは持続的で環境に配慮した農業に寄与し、農薬への依存を減らす。
将来的には、RAG統合オブジェクト検出システムにおける継続的開発を構想し、スケーラビリティ、信頼性、ユーザビリティを強調している。
この研究は、持続的で技術的に強化された食品生産へのグローバルな取り組みと整合して、農業のポジティブな変化のビーコンになることを目指している。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - A Semantic Segmentation Approach on Sweet Orange Leaf Diseases Detection Utilizing YOLO [0.0]
本研究は、YOLOv8のような高度な人工知能モデルを利用して、甘いオレンジの葉の病気を診断する高度な手法を提案する。
YOLOv8はその迅速かつ正確な性能で認識され、VITはその詳細な特徴抽出能力で認識されている。
トレーニングと検証の段階では、YOLOv8の精度は80.4%、VITの精度は99.12%であった。
論文 参考訳(メタデータ) (2024-09-10T17:40:46Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
昆虫生産には 最大限の可能性を実現するために 最適化が必要です
これは選択的育種による興味のある形質の改善が目的である。
このレビューは、様々な分野の知識と、動物の繁殖、定量的遺伝学、進化生物学、昆虫学のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-06-26T07:50:58Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Large language models can help boost food production, but be mindful of their risks [0.0]
チャットGPTスタイルの大規模言語モデル(LLM)は、農業効率を高め、イノベーションを推進し、より良い政策を伝える可能性がある。
しかし、農業の誤報、大量の農夫データの収集、農業雇用への脅威といった課題は重要な懸念事項である。
LLMランドスケープの急速な進化は、農業政策立案者がフレームワークやガイドラインについて慎重に考える必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-03-20T17:19:25Z) - Intelligent Agricultural Greenhouse Control System Based on Internet of
Things and Machine Learning [0.0]
本研究は,モノのインターネット(IoT)と機械学習の融合に根ざした,高度な農業用温室制御システムを概念化し,実行しようとする試みである。
その結果、作物の生育効率と収量が向上し、資源の浪費が減少する。
論文 参考訳(メタデータ) (2024-02-14T09:07:00Z) - Leaf-Based Plant Disease Detection and Explainable AI [16.128084819516715]
農業部門は国の経済成長に不可欠な役割を担っている。
植物病は農業に影響を及ぼす重要な要因の1つである。
研究者は、植物病を検出するAIと機械学習技術に基づく多くのアプリケーションを調査してきた。
論文 参考訳(メタデータ) (2023-12-17T03:40:12Z) - Crop Disease Classification using Support Vector Machines with Green
Chromatic Coordinate (GCC) and Attention based feature extraction for IoT
based Smart Agricultural Applications [0.0]
植物病は農業栽培中の葉に悪影響を及ぼし、作物の生産量と経済的価値に大きな損失をもたらす。
各種機械学習(ML)と深層学習(DL)アルゴリズムが開発され,植物病の検出のための研究が行われている。
本稿では、注意に基づく特徴抽出、RGBチャネルに基づく色分析、SVM(Support Vector Machines)による性能向上による事前作業に基づく新しい分類手法を提案する。
論文 参考訳(メタデータ) (2023-11-01T10:44:49Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。