論文の概要: Augmented Functional Random Forests: Classifier Construction and Unbiased Functional Principal Components Importance through Ad-Hoc Conditional Permutations
- arxiv url: http://arxiv.org/abs/2408.13179v1
- Date: Fri, 23 Aug 2024 15:58:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 14:30:31.530020
- Title: Augmented Functional Random Forests: Classifier Construction and Unbiased Functional Principal Components Importance through Ad-Hoc Conditional Permutations
- Title(参考訳): 機能的ランダム林:アドホック条件による分類と機能的主成分の重要性
- Authors: Fabrizio Maturo, Annamaria Porreca,
- Abstract要約: 本稿では,木に基づく手法と関数型データ解析を統合した新しい教師付き分類手法を提案する。
機能的分類木と機能的ランダム林の拡張版を提案し,機能的主成分の重要性を評価するための新しいツールを取り入れた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel supervised classification strategy that integrates functional data analysis (FDA) with tree-based methods, addressing the challenges of high-dimensional data and enhancing the classification performance of existing functional classifiers. Specifically, we propose augmented versions of functional classification trees and functional random forests, incorporating a new tool for assessing the importance of functional principal components. This tool provides an ad-hoc method for determining unbiased permutation feature importance in functional data, particularly when dealing with correlated features derived from successive derivatives. Our study demonstrates that these additional features can significantly enhance the predictive power of functional classifiers. Experimental evaluations on both real-world and simulated datasets showcase the effectiveness of the proposed methodology, yielding promising results compared to existing methods.
- Abstract(参考訳): 本稿では,関数型データ解析(FDA)と木に基づく手法を統合し,高次元データの課題に対処し,既存の関数型分類器の分類性能を向上させる,新しい教師付き分類戦略を提案する。
具体的には,機能的分類木と機能的ランダム林の拡張版を提案し,機能的主成分の重要性を評価するための新しいツールを取り入れた。
本発明のツールは、特に連続デリバティブから派生した相関特徴を扱う際に、機能データにおける非バイアスな置換特徴の重要度を決定するためのアドホックな方法を提供する。
本研究は,これらの特徴が機能分類器の予測能力を大幅に向上させることを示す。
実世界のデータセットとシミュレーションデータセットの両方で実験により,提案手法の有効性が示され,既存の手法と比較して有望な結果が得られた。
関連論文リスト
- Enriched Functional Tree-Based Classifiers: A Novel Approach Leveraging
Derivatives and Geometric Features [0.0]
本研究では,高次元時系列の分類手法として,関数型データ分析(FDA)と木に基づくアンサンブル技術を統合した教師付き分類手法を提案する。
論文 参考訳(メタデータ) (2024-09-26T12:57:47Z) - Supervised Learning via Ensembles of Diverse Functional Representations: the Functional Voting Classifier [0.0]
本稿では,アンサンブルメンバーの学習に異なる関数型データ表現を用いる方法と,多数決によるベースモデル予測をどのように組み合わせることができるかを示す。
このフレームワークは、機能的なデータでアンサンブルを投票するための基盤を提供し、FDAの文脈で非常に奨励された研究ラインを刺激することができる。
論文 参考訳(メタデータ) (2024-03-23T09:24:29Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Multivariate feature ranking of gene expression data [62.997667081978825]
ペアワイズ相関とペアワイズ整合性に基づく2つの新しい多変量特徴ランキング手法を提案する。
提案手法は, クラスタリング変動, チ・スクエアド, 相関, 情報ゲイン, ReliefF および Significance の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-03T17:19:53Z) - Top-$k$ Regularization for Supervised Feature Selection [11.927046591097623]
教師付き特徴選択のための新しい,シンプルで効果的な正規化手法である Top-k$ regularization を導入する。
上位$kの正規化は、教師付き特徴選択に有効で安定であることを示す。
論文 参考訳(メタデータ) (2021-06-04T01:12:47Z) - Grouped Feature Importance and Combined Features Effect Plot [2.15867006052733]
解釈可能な機械学習は、機械学習アルゴリズムの人気が高まり、研究の活発な領域となっている。
機能グループに対して,既存のモデル非依存手法をどのように定義できるかを包括的に概観し,機能グループの重要性を評価した。
本稿では,特徴のスパースで解釈可能な線形結合に基づいて,特徴群の効果を可視化する手法である複合特徴効果プロットを提案する。
論文 参考訳(メタデータ) (2021-04-23T16:27:38Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Linear Classifier Combination via Multiple Potential Functions [0.6091702876917279]
決定境界からクラスセントロイドまでの距離との距離に基づいてスコアリング関数を計算する新しい概念を提案する。
重要な性質は、提案されたスコア関数がすべての線形基底分類器に対して同じ性質を持つことである。
論文 参考訳(メタデータ) (2020-10-02T08:11:51Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Invariant Feature Coding using Tensor Product Representation [75.62232699377877]
我々は,群不変特徴ベクトルが線形分類器を学習する際に十分な識別情報を含んでいることを証明した。
主成分分析やk平均クラスタリングにおいて,グループアクションを明示的に考慮する新たな特徴モデルを提案する。
論文 参考訳(メタデータ) (2019-06-05T07:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。