Optimal Quantum Circuit Design via Unitary Neural Networks
- URL: http://arxiv.org/abs/2408.13211v1
- Date: Fri, 23 Aug 2024 16:41:15 GMT
- Title: Optimal Quantum Circuit Design via Unitary Neural Networks
- Authors: M. Zomorodi, H. Amini, M. Abbaszadeh, J. Sohrabi, V. Salari, P. Plawiak,
- Abstract summary: We present an automated method for synthesizing the functionality of a quantum algorithm into a quantum circuit model representation.
We demonstrate that this trained model can effectively generate a quantum circuit model equivalent to the original algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The process of translating a quantum algorithm into a form suitable for implementation on a quantum computing platform is crucial but yet challenging. This entails specifying quantum operations with precision, a typically intricate task. In this paper, we present an alternative approach: an automated method for synthesizing the functionality of a quantum algorithm into a quantum circuit model representation. Our methodology involves training a neural network model using diverse input-output mappings of the quantum algorithm. We demonstrate that this trained model can effectively generate a quantum circuit model equivalent to the original algorithm. Remarkably, our observations indicate that the trained model achieves near-perfect mapping of unseen inputs to their respective outputs.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Demonstration of Hardware Efficient Photonic Variational Quantum Algorithm [2.4630731476141365]
We show that single photons and linear optical networks are sufficient for implementing Variational Quantum Algorithms.
We show this by a proof-of-principle demonstration of a variational approach to tackle an instance of a factorization task.
arXiv Detail & Related papers (2024-08-19T18:26:57Z) - Quantum Circuit Ansatz: Patterns of Abstraction and Reuse of Quantum Algorithm Design [3.8425905067219492]
The paper presents a categorized catalog of quantum circuit ansatzes.
Each ansatz is described with details such as intent, motivation, applicability, circuit diagram, implementation, example, and see also.
Practical examples are provided to illustrate their application in quantum algorithm design.
arXiv Detail & Related papers (2024-05-08T12:44:37Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Dissipative learning of a quantum classifier [0.0]
We analyze the learning dynamics of a quantum classifier model that works as an open quantum system.
The model can be successfully trained with a gradient descent (GD) based algorithm.
The fact that these optimization processes have been obtained with continuous dynamics, shows promise for the development of a differentiable activation function.
arXiv Detail & Related papers (2023-07-23T11:08:51Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.