Enhancing Autism Spectrum Disorder Early Detection with the Parent-Child Dyads Block-Play Protocol and an Attention-enhanced GCN-xLSTM Hybrid Deep Learning Framework
- URL: http://arxiv.org/abs/2408.16924v1
- Date: Thu, 29 Aug 2024 21:53:01 GMT
- Title: Enhancing Autism Spectrum Disorder Early Detection with the Parent-Child Dyads Block-Play Protocol and an Attention-enhanced GCN-xLSTM Hybrid Deep Learning Framework
- Authors: Xiang Li, Lizhou Fan, Hanbo Wu, Kunping Chen, Xiaoxiao Yu, Chao Che, Zhifeng Cai, Xiuhong Niu, Aihua Cao, Xin Ma,
- Abstract summary: This work proposes a novel Parent-Child Dyads Block-Play (PCB) protocol to identify behavioral patterns distinguishing ASD from typically developing toddlers.
We have compiled a substantial video dataset, featuring 40 ASD and 89 TD toddlers engaged in block play with parents.
This dataset exceeds previous efforts on both the scale of participants and the length of individual sessions.
- Score: 6.785167067600156
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Autism Spectrum Disorder (ASD) is a rapidly growing neurodevelopmental disorder. Performing a timely intervention is crucial for the growth of young children with ASD, but traditional clinical screening methods lack objectivity. This study introduces an innovative approach to early detection of ASD. The contributions are threefold. First, this work proposes a novel Parent-Child Dyads Block-Play (PCB) protocol, grounded in kinesiological and neuroscientific research, to identify behavioral patterns distinguishing ASD from typically developing (TD) toddlers. Second, we have compiled a substantial video dataset, featuring 40 ASD and 89 TD toddlers engaged in block play with parents. This dataset exceeds previous efforts on both the scale of participants and the length of individual sessions. Third, our approach to action analysis in videos employs a hybrid deep learning framework, integrating a two-stream graph convolution network with attention-enhanced xLSTM (2sGCN-AxLSTM). This framework is adept at capturing dynamic interactions between toddlers and parents by extracting spatial features correlated with upper body and head movements and focusing on global contextual information of action sequences over time. By learning these global features with spatio-temporal correlations, our 2sGCN-AxLSTM effectively analyzes dynamic human behavior patterns and demonstrates an unprecedented accuracy of 89.6\% in early detection of ASD. Our approach shows strong potential for enhancing early ASD diagnosis by accurately analyzing parent-child interactions, providing a critical tool to support timely and informed clinical decision-making.
Related papers
- Ensemble Modeling of Multiple Physical Indicators to Dynamically Phenotype Autism Spectrum Disorder [3.6630139570443996]
We provide a dataset for training computer vision models to detect Autism Spectrum Disorder (ASD)-related phenotypic markers.
We trained individual LSTM-based models using eye gaze, head positions, and facial landmarks as input features, achieving test AUCs of 86%, 67%, and 78%.
arXiv Detail & Related papers (2024-08-23T17:55:58Z) - Localizing Moments of Actions in Untrimmed Videos of Infants with Autism Spectrum Disorder [5.2289135066938375]
We introduce a self-attention based TAL model designed to identify ASD-related behaviors in infant videos.
This study is the first to conduct end-to-end temporal action localization in untrimmed videos of infants with ASD.
We achieve 70% accuracy for look face, 79% accuracy for look object, 72% for smile and 65% for vocalization.
arXiv Detail & Related papers (2024-04-08T20:31:27Z) - Cas-DiffCom: Cascaded diffusion model for infant longitudinal
super-resolution 3D medical image completion [47.83003164569194]
We propose a two-stage cascaded diffusion model, Cas-DiffCom, for dense and longitudinal 3D infant brain MRI completion and super-resolution.
Experiment results validate that Cas-DiffCom achieves both individual consistency and high fidelity in longitudinal infant brain image completion.
arXiv Detail & Related papers (2024-02-21T12:54:40Z) - Early Autism Diagnosis based on Path Signature and Siamese Unsupervised Feature Compressor [15.39635888144281]
We resort to a novel deep learning-based method to extract key features from the inherently scarce, class-imbalanced, and heterogeneous structural MR images for early autism diagnosis.
Specifically, we propose a Siamese verification framework to extend the scarce data, and an unsupervised compressor to alleviate data imbalance.
arXiv Detail & Related papers (2023-07-12T22:08:22Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
We propose an explainable geometric deep network dubbed NeuroExplainer.
NeuroExplainer is used to uncover altered infant cortical development patterns associated with preterm birth.
arXiv Detail & Related papers (2023-01-01T12:48:12Z) - Vision-Based Activity Recognition in Children with Autism-Related
Behaviors [15.915410623440874]
We demonstrate the effect of a region-based computer vision system to help clinicians and parents analyze a child's behavior.
The data is pre-processed by detecting the target child in the video to reduce the impact of background noise.
Motivated by the effectiveness of temporal convolutional models, we propose both light-weight and conventional models capable of extracting action features from video frames.
arXiv Detail & Related papers (2022-08-08T15:12:27Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
Lack of money, absence of qualified specialists, and low level of trust to the correction methods are the main issues that affect the in-time diagnoses of ASD.
Our team developed the algorithm that will be able to predict the chances of ASD according to the information from the gaze activity of the child.
arXiv Detail & Related papers (2020-08-21T20:22:55Z) - A Smartphone-based System for Real-time Early Childhood Caries Diagnosis [76.71303610807156]
Early childhood caries (ECC) is the most common, yet preventable chronic disease in children under the age of 6.
In this study, we propose a multistage deep learning-based system for cavity detection.
We integrate the deep learning system into an easy-to-use mobile application that can diagnose ECC from an early stage and provide real-time results to untrained users.
arXiv Detail & Related papers (2020-08-17T21:11:19Z) - A Convolutional Neural Network for gaze preference detection: A
potential tool for diagnostics of autism spectrum disorder in children [0.0]
We propose a convolutional neural network (CNN) algorithm for gaze prediction using images extracted from a one-minute stimulus video.
Our model achieved a high accuracy rate and robustness for prediction of gaze direction with independent persons.
arXiv Detail & Related papers (2020-07-28T18:47:21Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
We propose a 4D convolutional deep learning approach for ASD classification where we jointly learn from spatial and temporal data.
We employ 4D neural networks and convolutional-recurrent models which outperform a previous approach with an F1-score of 0.71 compared to an F1-score of 0.65.
arXiv Detail & Related papers (2020-04-21T17:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.