論文の概要: Retrieval-Augmented Generation Meets Data-Driven Tabula Rasa Approach for Temporal Knowledge Graph Forecasting
- arxiv url: http://arxiv.org/abs/2408.13273v1
- Date: Sun, 18 Aug 2024 11:52:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 16:52:18.451243
- Title: Retrieval-Augmented Generation Meets Data-Driven Tabula Rasa Approach for Temporal Knowledge Graph Forecasting
- Title(参考訳): Retrieval-Augmented Generationは、時間的知識グラフ予測のためのデータ駆動型タビューララサアプローチを実現する
- Authors: Geethan Sannidhi, Sagar Srinivas Sakhinana, Venkataramana Runkana,
- Abstract要約: sLA-tKGFは、時間的知識グラフ(tKG)予測のための小規模言語アシスタントである。
本フレームワークは,tKGとWeb検索結果の履歴データを用いて,知識注入型プロンプトを構築する。
幻覚を減らし、時間とともに変化する傾向を理解することで分布シフトの課題を緩和する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pre-trained large language models (PLLMs) like OpenAI ChatGPT and Google Gemini face challenges such as inaccurate factual recall, hallucinations, biases, and future data leakage for temporal Knowledge Graph (tKG) forecasting. To address these issues, we introduce sLA-tKGF (small-scale language assistant for tKG forecasting), which utilizes Retrieval-Augmented Generation (RAG) aided, custom-trained small-scale language models through a tabula rasa approach from scratch for effective tKG forecasting. Our framework constructs knowledge-infused prompts with relevant historical data from tKGs, web search results, and PLLMs-generated textual descriptions to understand historical entity relationships prior to the target time. It leverages these external knowledge-infused prompts for deeper understanding and reasoning of context-specific semantic and temporal information to zero-shot prompt small-scale language models for more accurate predictions of future events within tKGs. It reduces hallucinations and mitigates distributional shift challenges through comprehending changing trends over time. As a result, it enables more accurate and contextually grounded forecasts of future events while minimizing computational demands. Rigorous empirical studies demonstrate our framework robustness, scalability, and state-of-the-art (SOTA) performance on benchmark datasets with interpretable and trustworthy tKG forecasting.
- Abstract(参考訳): OpenAI ChatGPTやGoogle Geminiのような事前訓練された大規模言語モデル(PLLM)は、不正確な事実のリコール、幻覚、バイアス、時間的知識グラフ(tKG)予測のための将来のデータ漏洩といった課題に直面している。
これらの問題に対処するために,我々は tKG 予測のための sLA-tKGF を導入する。これは tKG 予測のための tKG 予測をスクラッチからタトゥーラ・ラサ・アプローチにより,RAG (Retrieval-Augmented Generation) を利用した小型言語モデルである。
本フレームワークは,tKGs,Web検索結果,PLLMs生成したテキスト記述から,対象時間前の歴史的実体関係を理解するために,関連する履歴データを用いた知識注入プロンプトを構築する。
文脈固有の意味と時間情報の深い理解と推論のために、これらの外部知識を注入したプロンプトをゼロショットのプロンプトに活用し、tKG内の将来の事象をより正確に予測する。
幻覚を減らし、時間とともに変化する傾向を理解することで分布シフトの課題を緩和する。
その結果、計算要求を最小限に抑えつつ、より正確で文脈的に将来の事象の予測を可能にする。
厳密な実証研究は、解釈可能で信頼性の高いtKG予測を伴うベンチマークデータセット上での我々のフレームワークの堅牢性、スケーラビリティ、およびSOTA(State-of-the-art)パフォーマンスを実証する。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - XForecast: Evaluating Natural Language Explanations for Time Series Forecasting [72.57427992446698]
時系列予測は、特に正確な予測に依存するステークホルダーにとって、意思決定を支援する。
伝統的に説明可能なAI(XAI)メソッドは、機能や時間的重要性を基盤とするものであり、専門家の知識を必要とすることが多い。
時系列データにおける複雑な因果関係のため,予測NLEの評価は困難である。
論文 参考訳(メタデータ) (2024-10-18T05:16:39Z) - Learning Granularity Representation for Temporal Knowledge Graph Completion [2.689675451882683]
時間的知識グラフ(TKG)は、実世界の事実の動的な構造的知識と進化的パターンを反映する時間的情報を含んでいる。
本稿では,TKG 補完のための textbfLearning textbfGranularity textbfRepresentation (termed $mathsfLGRe$) を提案する。
グラニュラリティ・ラーニング(GRL)とアダプティブグラニュラリティ・バランシング(AGB)の2つの主要コンポーネントから構成される。
論文 参考訳(メタデータ) (2024-08-27T08:19:34Z) - Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning [87.10396098919013]
大規模言語モデル (LLM) は、時間的推論において広範な知識と卓越した能力を示した。
本稿では,時間的知識グラフに基づく推論のためのLarge Language Models-Guided Dynamic Adaptation (LLM-DA)法を提案する。
LLM-DAは、歴史的データを解析し、時間的論理規則を抽出するLLMの機能を利用する。
論文 参考訳(メタデータ) (2024-05-23T04:54:37Z) - Selective Temporal Knowledge Graph Reasoning [70.11788354442218]
時間的知識グラフ(TKG)は、与えられた歴史的事実に基づいて将来の事実を予測することを目的としている。
既存のTKG推論モデルは、不確実な予測を控えることができない。
本稿では,既存のモデルが無差別な予測ではなく選択的に行うのに役立つ,TKG推論の棄却機構を提案する。
論文 参考訳(メタデータ) (2024-04-02T06:56:21Z) - Prompt Learning on Temporal Interaction Graphs [25.28535762085367]
時間的相互作用グラフ(TIG)は現実世界のシステムを表現するために広く利用されている。
TIGモデルは、トレーニング前予測のトレーニングパラダイムにおいて、トレーニング前予測と下流予測の間に厳しいギャップに直面しています。
本稿では,TIGモデルとシームレスに統合する汎用フレームワークであるTIGPromptについて紹介する。
論文 参考訳(メタデータ) (2024-02-09T11:06:20Z) - Learning Multi-graph Structure for Temporal Knowledge Graph Reasoning [3.3571415078869955]
本稿では,LMS(Learning Multi-graph Structure)に着目した革新的な推論手法を提案する。
LMSは、タイムスタンプに沿って効果的にエンティティ表現をマージするための適応ゲートを組み込んでいる。
また、タイムスタンプのセマンティクスをグラフアテンション計算や時間認識デコーダに統合する。
論文 参考訳(メタデータ) (2023-12-04T08:23:09Z) - GenTKG: Generative Forecasting on Temporal Knowledge Graph with Large Language Models [35.594662986581746]
大規模言語モデル (LLM) は、従来の埋め込みベースおよびルールベースの手法が支配する時間的知識グラフ (tKG) 領域に関心を抱いている。
本稿では、時間的論理ルールに基づく検索戦略と、パラメータ効率の少ない命令チューニングを組み合わせた、GenTKGという新しい検索拡張生成フレームワークを提案する。
実験により、GenTKGは計算資源の少ない時間的関係予測法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-11T18:27:12Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
論文 参考訳(メタデータ) (2023-08-29T03:26:38Z) - Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context
Learning [23.971206470486468]
本稿では,関連する歴史的事実をプロンプトに変換し,トークン確率を用いてランキング予測を生成する枠組みを提案する。
驚いたことに、LLMは最先端のTKGモデルと同等に動作している。
また,エンティティ/リレーション名の代わりに数値指標を用いると,性能に悪影響を及ぼさないことも判明した。
論文 参考訳(メタデータ) (2023-05-17T23:50:28Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。