論文の概要: A Deep Dive Into Large Language Model Code Generation Mistakes: What and Why?
- arxiv url: http://arxiv.org/abs/2411.01414v1
- Date: Sun, 03 Nov 2024 02:47:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:56.771256
- Title: A Deep Dive Into Large Language Model Code Generation Mistakes: What and Why?
- Title(参考訳): 大規模言語モデルコード生成への深い取り組み:何となぜ?
- Authors: QiHong Chen, Jiawei Li, Jiecheng Deng, Jiachen Yu, Justin Tian Jin Chen, Iftekhar Ahmed,
- Abstract要約: 大規模な言語モデルは、仕様から逸脱する欠陥コードを生成することができる。
広範囲な手動分析により, ノンシンタクティックな誤りの7つのカテゴリーが同定された。
評価の結果,LPMの誤りの原因を特定すると,ReActプロンプト技術を用いたGPT-4が最大0.65のF1スコアを達成できることがわかった。
- 参考スコア(独自算出の注目度): 9.246899995643918
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have led to their widespread application in automated code generation. However, these models can still generate defective code that deviates from the specification. Previous research has mainly focused on the mistakes in LLM-generated standalone functions, overlooking real-world software development situations where the successful generation of the code requires software contexts such as external dependencies. In this paper, we considered both of these code generation situations and identified a range of \textit{non-syntactic mistakes} arising from LLMs' misunderstandings of coding question specifications. Seven categories of non-syntactic mistakes were identified through extensive manual analyses, four of which were missed by previous works. To better understand these mistakes, we proposed six reasons behind these mistakes from various perspectives. Moreover, we explored the effectiveness of LLMs in detecting mistakes and their reasons. Our evaluation demonstrated that GPT-4 with the ReAct prompting technique can achieve an F1 score of up to 0.65 when identifying reasons for LLM's mistakes, such as misleading function signatures. We believe that these findings offer valuable insights into enhancing the quality of LLM-generated code.
- Abstract(参考訳): 近年のLLM(Large Language Models)の進歩は、自動コード生成に広く応用されている。
しかし、これらのモデルは仕様から逸脱する欠陥コードを生成することができる。
これまでの研究は、LLMが生成するスタンドアロン関数の誤りに主に焦点を合わせてきた。これは、コードの生成が成功した場合、外部依存関係のようなソフトウェアコンテキストを必要とする現実的なソフトウェア開発状況を見落としている。
本稿では,これら2つのコード生成状況について考察し,LLMのコーディング問題仕様の誤解から生じる「textit{non-syntactic mistake}」の範囲を特定した。
7つの非症状的誤りのカテゴリーが、広範囲な手作業による分析によって特定され、そのうち4つは以前の研究で見逃された。
これらの誤りをよりよく理解するために、さまざまな観点から、これらの誤りの背後にある6つの理由を提案しました。
さらに, 誤り検出におけるLLMの有効性とその原因について検討した。
評価の結果,関数シグネチャを誤解させるなどLCMの誤りの原因を特定すると,ReActプロンプトを用いたGPT-4が最大0.65のF1スコアを達成できることがわかった。
これらの発見は、LLM生成コードの品質向上に有用な洞察をもたらすと信じている。
関連論文リスト
- SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs [77.79172008184415]
SpecToolは、ツール使用タスクのLLM出力のエラーパターンを特定するための新しいベンチマークである。
もっとも顕著なLCMでも,これらの誤りパターンが出力に現れることを示す。
SPECTOOLの分析と洞察を使って、エラー軽減戦略をガイドすることができる。
論文 参考訳(メタデータ) (2024-11-20T18:56:22Z) - Insights from Benchmarking Frontier Language Models on Web App Code Generation [1.7268889851975326]
本稿では,WebApp1Kベンチマークによる16のフロンティア大言語モデル(LLM)の評価から得られた知見について述べる。
結果は、全てのモデルが類似した知識を持っているが、それらの性能は、それらが犯した誤りの頻度によって区別されることを示している。
論文 参考訳(メタデータ) (2024-09-08T18:24:26Z) - Understanding Defects in Generated Codes by Language Models [0.669087470775851]
本研究では,大規模言語モデルによって生成されたコードスニペットの367の欠陥を分類,解析する。
エラーカテゴリは、LLMが頻繁に失敗する重要な領域を示し、目標とする改善の必要性を強調している。
本稿では,スクラッチパッド・プロンプト・プログラム・オブ・ソート・プロンプト・チェーン・オブ・ソート・プロンプト・チェーン・オブ・ソート・プロンプト・ストラクテッド・オブ・ソート・プロンプト・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・プログラム・オブ・オブ・ソート・プロンプト・プロンプト・アンド・ストラクテッド・オブ・フォーンティング(Structued Chain-of-Thought Prompting)の5つの迅速な技術技術
論文 参考訳(メタデータ) (2024-08-23T21:10:09Z) - See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses [51.975495361024606]
本稿では,Human-in-the-loopを用いたセルフチェレンジ評価フレームワークを提案する。
GPT-4が答えられないシードインスタンスから始めて、GPT-4に新しいインスタンスを生成するのに使えるエラーパターンを要約するように促します。
次に,GPT-4が生成する1,835個のインスタンスと,人手によるゴールド応答を併用したベンチマーク,SC-G4を構築した。
論文 参考訳(メタデータ) (2024-08-16T19:01:52Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Where Do Large Language Models Fail When Generating Code? [10.519984835232359]
大規模言語モデル(LLM)はコード生成に大きな可能性を示しています。
LLMがどのようなコード生成エラーを発生させるのかは不明だ。
我々は、HumanEvalデータセット上で6つの人気のあるLCMが生成した誤りコードスニペットを分析した。
論文 参考訳(メタデータ) (2024-06-13T01:29:52Z) - Validating LLM-Generated Programs with Metamorphic Prompt Testing [8.785973653167112]
大規模言語モデル(LLM)は、ソフトウェア開発ライフサイクルにますます統合されています。
本稿では,これらの課題に対処するため,メタモルフィック・プロンプト・テストと呼ばれる新しい手法を提案する。
我々のHumanEvalに対する評価は,GPT-4が生成する誤プログラムの75%を,偽陽性率8.6%で検出できることを示す。
論文 参考訳(メタデータ) (2024-06-11T00:40:17Z) - Learning From Mistakes Makes LLM Better Reasoner [106.48571828587728]
大規模言語モデル(LLM)は、最近数学の問題を解く際、顕著な推論能力を示した。
この研究は、LLMが人間の学習プロセスに似たMistAkes(LEMA)から学習できるかどうかを探求する。
論文 参考訳(メタデータ) (2023-10-31T17:52:22Z) - Knowledge-Augmented Language Model Verification [68.6099592486075]
最近の言語モデル(LM)は、パラメータに内在化された知識を持つテキストを生成する際、印象的な能力を示している。
本稿では,知識付加型LMの出力と知識を別個の検証器で検証することを提案する。
その結果,提案した検証器は,検索と生成の誤りを効果的に識別し,LMがより現実的に正しい出力を提供できることを示した。
論文 参考訳(メタデータ) (2023-10-19T15:40:00Z) - Do Large Language Models Pay Similar Attention Like Human Programmers When Generating Code? [10.249771123421432]
我々は,Large Language Models (LLMs) が,コード生成中に人間のプログラマと同じタスク記述に係わるかどうかを検討する。
手動で211の間違ったコードスニペットを分析し、多くのコード生成エラーを説明するのに使える5つの注意パターンを見つけました。
この結果から,人間によるLLMの理解性向上とプログラマの信頼度向上の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2023-06-02T00:57:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。