GNN: Graph Neural Network and Large Language Model for Data Discovery
- URL: http://arxiv.org/abs/2408.13609v2
- Date: Tue, 27 Aug 2024 04:49:46 GMT
- Title: GNN: Graph Neural Network and Large Language Model for Data Discovery
- Authors: Thomas Hoang,
- Abstract summary: Our algorithm GNN uses graph neural networks and large language models to understand text type values.
GNN could be seen as an extension of PLOD in terms of understanding the text type value and the user's preferences.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our algorithm GNN: Graph Neural Network and Large Language Model for Data Discovery inherit the benefits of \cite{hoang2024plod} (PLOD: Predictive Learning Optimal Data Discovery), \cite{Hoang2024BODBO} (BOD: Blindly Optimal Data Discovery) in terms of overcoming the challenges of having to predefine utility function and the human input for attribute ranking, which helps prevent the time-consuming loop process. In addition to these previous works, our algorithm GNN leverages the advantages of graph neural networks and large language models to understand text type values that cannot be understood by PLOD and MOD, thus making the task of predicting outcomes more reliable. GNN could be seen as an extension of PLOD in terms of understanding the text type value and the user's preferences, not only numerical values but also text values, making the promise of data science and analytics purposes.
Related papers
- How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
We study the training dynamics in function space of graph neural networks (GNNs)
We find that the gradient descent optimization of GNNs implicitly leverages the graph structure to update the learned function.
This finding offers new interpretable insights into when and why the learned GNN functions generalize.
arXiv Detail & Related papers (2023-10-08T10:19:56Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - GNNInterpreter: A Probabilistic Generative Model-Level Explanation for
Graph Neural Networks [25.94529851210956]
We propose a model-agnostic model-level explanation method for different Graph Neural Networks (GNNs) that follow the message passing scheme, GNNInterpreter.
GNNInterpreter learns a probabilistic generative graph distribution that produces the most discriminative graph pattern the GNN tries to detect.
Compared to existing works, GNNInterpreter is more flexible and computationally efficient in generating explanation graphs with different types of node and edge features.
arXiv Detail & Related papers (2022-09-15T07:45:35Z) - Efficient and effective training of language and graph neural network
models [36.00479096375565]
We put forth an efficient and effective framework termed language model GNN (LM-GNN) to jointly train large-scale language models and graph neural networks.
The effectiveness in our framework is achieved by applying stage-wise fine-tuning of the BERT model first with heterogenous graph information and then with a GNN model.
We evaluate the LM-GNN framework in different datasets performance and showcase the effectiveness of the proposed approach.
arXiv Detail & Related papers (2022-06-22T00:23:37Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
In this work, we address conditional generation using deep invertible neural networks.
We adopt an end-to-end training approach since our objective is to address prediction and generation in the forward and backward processes at once.
arXiv Detail & Related papers (2022-06-02T17:28:33Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - TextRGNN: Residual Graph Neural Networks for Text Classification [13.912147013558846]
TextRGNN is an improved GNN structure that introduces residual connection to deepen the convolution network depth.
Our structure can obtain a wider node receptive field and effectively suppress the over-smoothing of node features.
It can significantly improve the classification accuracy whether in corpus level or text level, and achieve SOTA performance on a wide range of text classification datasets.
arXiv Detail & Related papers (2021-12-30T13:48:58Z) - Graph Neural Networks for Natural Language Processing: A Survey [64.36633422999905]
We present a comprehensive overview onGraph Neural Networks (GNNs) for Natural Language Processing.
We propose a new taxonomy of GNNs for NLP, which organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models.
arXiv Detail & Related papers (2021-06-10T23:59:26Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.