論文の概要: Hierarchical Network Fusion for Multi-Modal Electron Micrograph Representation Learning with Foundational Large Language Models
- arxiv url: http://arxiv.org/abs/2408.13661v1
- Date: Sat, 24 Aug 2024 19:24:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:29:37.132134
- Title: Hierarchical Network Fusion for Multi-Modal Electron Micrograph Representation Learning with Foundational Large Language Models
- Title(参考訳): 基礎的大言語モデルを用いた多モード電子マイクログラフ表現学習のための階層型ネットワーク融合
- Authors: Sakhinana Sagar Srinivas, Geethan Sannidhi, Venkataramana Runkana,
- Abstract要約: 電子マイクログラフ解析のための革新的なバックボーンアーキテクチャを提案する。
マイクログラフをパッチシーケンスにトークン化し、視覚グラフとして表現することで、マイクログラフのマルチモーダル表現を作成する。
我々のフレームワークは従来の手法よりも優れており、分散シフトによって引き起こされる課題を克服しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Characterizing materials with electron micrographs is a crucial task in fields such as semiconductors and quantum materials. The complex hierarchical structure of micrographs often poses challenges for traditional classification methods. In this study, we propose an innovative backbone architecture for analyzing electron micrographs. We create multi-modal representations of the micrographs by tokenizing them into patch sequences and, additionally, representing them as vision graphs, commonly referred to as patch attributed graphs. We introduce the Hierarchical Network Fusion (HNF), a multi-layered network structure architecture that facilitates information exchange between the multi-modal representations and knowledge integration across different patch resolutions. Furthermore, we leverage large language models (LLMs) to generate detailed technical descriptions of nanomaterials as auxiliary information to assist in the downstream task. We utilize a cross-modal attention mechanism for knowledge fusion across cross-domain representations(both image-based and linguistic insights) to predict the nanomaterial category. This multi-faceted approach promises a more comprehensive and accurate representation and classification of micrographs for nanomaterial identification. Our framework outperforms traditional methods, overcoming challenges posed by distributional shifts, and facilitating high-throughput screening.
- Abstract(参考訳): 電子マイクログラフによる材料評価は、半導体や量子材料といった分野において重要な課題である。
マイクログラフの複雑な階層構造は、しばしば伝統的な分類法に挑戦する。
本研究では,電子マイクログラフ解析のための革新的なバックボーンアーキテクチャを提案する。
マイクログラフをパッチシーケンスにトークン化し,さらに視覚グラフとして表現することで,マイクログラフのマルチモーダル表現を作成する。
HNF(Hierarchical Network Fusion)は,マルチモーダル表現間の情報交換と,異なるパッチ解決における知識統合を容易にする多層ネットワーク構造アーキテクチャである。
さらに,大規模言語モデル(LLM)を利用して,ナノマテリアルの詳細な技術記述を補助情報として生成し,下流作業を支援する。
我々は,ナノマテリアルのカテゴリを予測するために,クロスドメイン表現(画像ベースと言語情報の両方)間の知識融合のためのクロスモーダルアテンション機構を利用する。
この多面的アプローチは、ナノマテリアル識別のためのより包括的で正確なマイクログラフの表現と分類を約束する。
我々のフレームワークは従来の手法よりも優れており、分散シフトによる課題を克服し、高スループットのスクリーニングを容易にする。
関連論文リスト
- Preliminary Investigations of a Multi-Faceted Robust and Synergistic Approach in Semiconductor Electron Micrograph Analysis: Integrating Vision Transformers with Large Language and Multimodal Models [0.0]
本研究ではゼロショットプロンプトの生成能力を活用する革新的なアーキテクチャを提案する。
画像に基づく知識と言語的な洞察を融合させ、正確なナノマテリアルカテゴリー予測を行う。
論文 参考訳(メタデータ) (2024-08-24T16:28:00Z) - EMCNet : Graph-Nets for Electron Micrographs Classification [0.0]
ナノマテリアル識別のためのエンド・ツー・エンドの電子マイクログラフ表現学習フレームワークを提案する。
筆者らのフレームワークは,ナノマテリアルに基づく識別タスクにおいて,オープンソースデータセットの一般的なベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-08-21T02:15:26Z) - Integrating multiscale topology in digital pathology with pyramidal graph convolutional networks [0.10995326465245926]
グラフ畳み込みネットワーク(GCN)は、デジタル病理学における畳み込みニューラルネットワークを用いた複数インスタンス学習の強力な代替手段として登場した。
提案するマルチスケールGCN (MS-GCN) は,スライド画像全体において複数の倍率レベルにまたがる情報を活用することでこの問題に対処する。
MS-GCNは、既存の単一磁化GCN法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-22T09:48:50Z) - MeLM, a generative pretrained language modeling framework that solves
forward and inverse mechanics problems [0.0]
本稿では, 様々な非線形前方・逆問題の解法として, フレキシブルなマルチモーダル力学言語モデル, MeLM を適用する。
このフレームワークは、バイオインスパイアされた階層的ハニカム設計やカーボンナノチューブ力学など、様々な例に適用されている。
論文 参考訳(メタデータ) (2023-06-30T10:28:20Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
既存のマルチモーダル関係抽出(MRE)研究は、内部情報過剰利用と外部情報過多という2つの共存課題に直面している。
内部情報スクリーニングと外部情報活用を同時に実現する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:56:57Z) - Molecular Joint Representation Learning via Multi-modal Information [11.493011069441188]
MMSGと呼ばれるSMILESと分子グラフのマルチモーダル情報を用いた分子共同表現学習フレームワークを提案する。
トランスフォーマーのアテンションバイアスとしてボンドレベルグラフ表現を導入することにより,自己注意機構を改善した。
さらに,グラフから集約された情報フローを強化するために,双方向メッセージ通信グラフニューラルネットワーク(BMC GNN)を提案する。
論文 参考訳(メタデータ) (2022-11-25T11:53:23Z) - Convolutional Learning on Multigraphs [153.20329791008095]
我々は、多グラフ上の畳み込み情報処理を開発し、畳み込み多グラフニューラルネットワーク(MGNN)を導入する。
情報拡散の複雑なダイナミクスを多グラフのエッジのクラス間で捉えるために、畳み込み信号処理モデルを定式化する。
我々は,計算複雑性を低減するため,サンプリング手順を含むマルチグラフ学習アーキテクチャを開発した。
導入されたアーキテクチャは、最適な無線リソース割り当てとヘイトスピーチローカライゼーションタスクに適用され、従来のグラフニューラルネットワークよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2022-09-23T00:33:04Z) - Multimodal Image Synthesis and Editing: The Generative AI Era [131.9569600472503]
マルチモーダル画像合成と編集は 近年 ホットな研究テーマになっている。
近年のマルチモーダル画像合成・編集の進歩を包括的に理解している。
ベンチマークデータセットと評価指標と,それに対応する実験結果について述べる。
論文 参考訳(メタデータ) (2021-12-27T10:00:16Z) - Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation [87.01669173673288]
本稿では,視覚的エンコーダをマルチモーダルな特徴学習ネットワークに変換するエンコーダ融合ネットワーク(EFN)を提案する。
EFNには、マルチモーダル機能の並列更新を実現するコアテンションメカニズムが組み込まれている。
4つのベンチマークデータセットによる実験結果から,提案手法がポストプロセッシングを伴わずに最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-05T02:27:25Z) - Cross-Media Keyphrase Prediction: A Unified Framework with
Multi-Modality Multi-Head Attention and Image Wordings [63.79979145520512]
マルチメディア投稿におけるキーワード予測におけるテキストと画像の併用効果について検討する。
複雑なマルチメディアインタラクションを捉えるために,M3H-Att(Multi-Modality Multi-Head Attention)を提案する。
我々のモデルは,従来の注目ネットワークに基づいて,過去の技術状況よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-11-03T08:44:18Z) - A Novel Graph-based Multi-modal Fusion Encoder for Neural Machine
Translation [131.33610549540043]
NMTのための新しいグラフベースのマルチモーダル核融合エンコーダを提案する。
まず、統合マルチモーダルグラフを用いて、入力文と画像を表す。
次に、複数のグラフベースのマルチモーダル融合層を積み重ねて、ノード表現を学習するためのセマンティックな相互作用を反復的に実行する。
論文 参考訳(メタデータ) (2020-07-17T04:06:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。