論文の概要: Molecular Joint Representation Learning via Multi-modal Information
- arxiv url: http://arxiv.org/abs/2211.14042v1
- Date: Fri, 25 Nov 2022 11:53:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 15:42:20.921247
- Title: Molecular Joint Representation Learning via Multi-modal Information
- Title(参考訳): マルチモーダル情報を用いた分子共同表現学習
- Authors: Tianyu Wu, Yang Tang, Qiyu Sun, Luolin Xiong
- Abstract要約: MMSGと呼ばれるSMILESと分子グラフのマルチモーダル情報を用いた分子共同表現学習フレームワークを提案する。
トランスフォーマーのアテンションバイアスとしてボンドレベルグラフ表現を導入することにより,自己注意機構を改善した。
さらに,グラフから集約された情報フローを強化するために,双方向メッセージ通信グラフニューラルネットワーク(BMC GNN)を提案する。
- 参考スコア(独自算出の注目度): 11.493011069441188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, artificial intelligence has played an important role on
accelerating the whole process of drug discovery. Various of molecular
representation schemes of different modals (e.g. textual sequence or graph) are
developed. By digitally encoding them, different chemical information can be
learned through corresponding network structures. Molecular graphs and
Simplified Molecular Input Line Entry System (SMILES) are popular means for
molecular representation learning in current. Previous works have done attempts
by combining both of them to solve the problem of specific information loss in
single-modal representation on various tasks. To further fusing such
multi-modal imformation, the correspondence between learned chemical feature
from different representation should be considered. To realize this, we propose
a novel framework of molecular joint representation learning via Multi-Modal
information of SMILES and molecular Graphs, called MMSG. We improve the
self-attention mechanism by introducing bond level graph representation as
attention bias in Transformer to reinforce feature correspondence between
multi-modal information. We further propose a Bidirectional Message
Communication Graph Neural Network (BMC GNN) to strengthen the information flow
aggregated from graphs for further combination. Numerous experiments on public
property prediction datasets have demonstrated the effectiveness of our model.
- Abstract(参考訳): 近年、人工知能は、薬物発見のプロセス全体を加速する上で重要な役割を担っている。
異なるモーダル(例えば、テキストシーケンスやグラフ)の様々な分子表現スキームが開発されている。
それらをデジタル符号化することで、対応するネットワーク構造を通して異なる化学情報を学ぶことができる。
分子グラフと簡易分子入力線入力システム(smiles)は、現在の分子表現学習の一般的な手段である。
従来の作業では,各タスクの単一モーダル表現における特定の情報損失の問題を解決するために,両者を組み合わせて試みてきた。
このようなマルチモーダルインフォーメーションをさらに活用するには、異なる表現から学習された化学特性の対応を考える必要がある。
これを実現するために,SMILESとMMSGと呼ばれる分子グラフのマルチモーダル情報を用いた分子共同表現学習フレームワークを提案する。
マルチモーダル情報間の特徴対応を強化するために,Transformerのアテンションバイアスとして結合レベルグラフ表現を導入することにより,自己注意機構を改善する。
さらに,グラフから集約された情報フローを強化するために,双方向メッセージ通信グラフニューラルネットワーク(BMC GNN)を提案する。
公共財産予測データセットに関する多くの実験が,本モデルの有効性を実証した。
関連論文リスト
- Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
我々は新しい分子グラフ表現学習法である textbf Structure similarity Motif GNN (MSSM-GNN) を紹介する。
特に,分子間の類似性を定量的に表現するために,グラフカーネルアルゴリズムを利用した特殊設計グラフを提案する。
我々はGNNを用いて分子グラフから特徴表現を学習し、追加の分子表現情報を組み込むことで特性予測の精度を高めることを目的としている。
論文 参考訳(メタデータ) (2024-09-13T06:59:10Z) - GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation [68.63955715643974]
Omnimodal Learning(GTP-4o)のためのモダリティプロンプト不均質グラフ
我々は、Omnimodal Learning(GTP-4o)のための革新的モダリティプロンプト不均質グラフを提案する。
論文 参考訳(メタデータ) (2024-07-08T01:06:13Z) - Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
深層学習に基づく分子特性予測は、従来の手法の資源集約性に対する解決策として登場した。
本稿では,分子特性予測のための新しいマルチモーダル表現学習モデルSGGRLを提案する。
モダリティ間の整合性を確保するため、SGGRLは異なる分子の類似性を最小化しながら同じ分子の表現の類似性を最大化するように訓練される。
論文 参考訳(メタデータ) (2024-01-07T02:18:00Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Learning Attributed Graph Representations with Communicative Message
Passing Transformer [3.812358821429274]
分子グラフ表現を改善するために,コミュニケーティブメッセージパッシングトランス (CoMPT) ニューラルネットワークを提案する。
分子を完全連結グラフとして扱う従来のトランスフォーマースタイルのGNNとは異なり、グラフ接続帰納バイアスを利用するメッセージ拡散機構を導入する。
論文 参考訳(メタデータ) (2021-07-19T11:58:32Z) - Multi-view Graph Contrastive Representation Learning for Drug-Drug
Interaction Prediction [11.87950055946236]
そこで本研究では,薬物と薬物の相互作用予測のためのマルチビューグラフコントラスト表現学習法であるMIRACLEを提案する。
我々は,MIRACLE学習段階におけるDDI関係と薬物分子グラフを符号化するために,GCNとボンドアウェア注意メッセージパッシングネットワークを使用する。
複数の実データセットの実験により、MIRACLEは最先端のDDI予測モデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-10-22T13:37:19Z) - BayReL: Bayesian Relational Learning for Multi-omics Data Integration [31.65670269480794]
我々は,異なるマルチオミクスデータ型間の相互作用を推論する新しい手法を開発した。
BayReLはビュー固有の潜伏変数と、ビュー間のインタラクションをエンコードするマルチパーティトグラフを学習する。
実世界の複数のデータセットに対する実験により,BayReLの性能が向上した。
論文 参考訳(メタデータ) (2020-10-12T17:43:07Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
本稿では,ラベル付き分子とラベルなし分子の両方を組み込んだ,アクティブ半教師付きグラフニューラルネットワーク(ASGN)を提案する。
教師モデルでは,分子構造や分子分布から情報を共同で活用する汎用表現を学習するための,新しい半教師付き学習手法を提案する。
最後に,分子多様性の観点から,フレームワーク学習全体を通して情報的データを選択するための新しい能動的学習戦略を提案する。
論文 参考訳(メタデータ) (2020-07-07T04:22:39Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。