論文の概要: Decentralised Gradient-based Variational Inference for Multi-sensor Fusion and Tracking in Clutter
- arxiv url: http://arxiv.org/abs/2408.13689v2
- Date: Sat, 14 Sep 2024 07:59:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 00:47:00.248690
- Title: Decentralised Gradient-based Variational Inference for Multi-sensor Fusion and Tracking in Clutter
- Title(参考訳): クラッタにおけるマルチセンサフュージョンと追跡のための分散勾配に基づく変分推論
- Authors: Qing Li, Runze Gan, Simon Godsill,
- Abstract要約: 本稿では,時間変化のある分散マルチセンサネットワーク下でのクラッタ内の複数物体の追跡作業について検討する。
提案手法は, 局所処理と近接センサのみとの通信により, 最適分散融合を実現する。
提案手法は, 追従精度の集中核融合と実証的に等価であり, 比較コストで準最適核融合技術を超え, コンセンサスに基づく多対象トラッカーよりもはるかに低い通信オーバヘッドを実現する。
- 参考スコア(独自算出の注目度): 6.897548238359086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the task of tracking multiple objects in clutter under a distributed multi-sensor network with time-varying connectivity. Designed with the same objective as the centralised variational multi-object tracker, the proposed method achieves optimal decentralised fusion in performance with local processing and communication with only neighboring sensors. A key innovation is the decentralised construction of a locally maximised evidence lower bound, which greatly reduces the information required for communication. Our decentralised natural gradient descent variational multi-object tracker, enhanced with the gradient tracking strategy and natural gradients that adjusts the direction of traditional gradients to the steepest, shows rapid convergence. Our results verify that the proposed method is empirically equivalent to the centralised fusion in tracking accuracy, surpasses suboptimal fusion techniques with comparable costs, and achieves much lower communication overhead than the consensus-based variational multi-object tracker.
- Abstract(参考訳): 本稿では,時間変化のある分散マルチセンサネットワーク下でのクラッタ内の複数物体の追跡作業について検討する。
本手法は, 局所処理と近接センサのみとの通信において, 最適な分散化融合を実現する。
鍵となる革新は、局所的に最大化された証拠の低い境界を分散的に構築することであり、通信に必要な情報を大幅に削減する。
従来の勾配の方向を最も急勾配に調整する勾配追従戦略と自然勾配で強化した分散型自然勾配降下変動型多対象トラッカーは,急速な収束を示す。
提案手法は, 追従精度の集中核融合と実証的に等価であり, 比較コストで準最適核融合技術を超え, コンセンサスに基づく多対象トラッカーよりもはるかに低い通信オーバヘッドを実現する。
関連論文リスト
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - Decentralized Federated Learning with Gradient Tracking over Time-Varying Directed Networks [42.92231921732718]
本稿では,DSGTm-TVというコンセンサスに基づくアルゴリズムを提案する。
グラデーショントラッキングとヘビーボールモーメントを取り入れて、グローバルな目的関数を最適化する。
DSGTm-TVでは、エージェントは近隣エージェントとの情報交換を用いて局所モデルパラメータと勾配推定を更新する。
論文 参考訳(メタデータ) (2024-09-25T06:23:16Z) - DRACO: Decentralized Asynchronous Federated Learning over Continuous Row-Stochastic Network Matrices [7.389425875982468]
DRACOは、行確率ゴシップ無線ネットワーク上での分散非同期Descent(SGD)の新しい手法である。
我々のアプローチは、分散ネットワーク内のエッジデバイスが、連続したタイムラインに沿ってローカルトレーニングとモデル交換を行うことを可能にする。
我々の数値実験は提案手法の有効性を裏付けるものである。
論文 参考訳(メタデータ) (2024-06-19T13:17:28Z) - Robust Decentralized Learning with Local Updates and Gradient Tracking [16.46727164965154]
分散学習をクライアントやノードのネットワークとみなす。
本稿では,局所的な更新と勾配追跡という2つの重要なデータを利用する分散化ミニマックス最適化手法を提案する。
論文 参考訳(メタデータ) (2024-05-02T03:03:34Z) - Decentralized Stochastic Subgradient Methods for Nonsmooth Nonconvex Optimization [10.278310909980576]
本稿では,ニューラルネットワークに対する分散的下位段階学習のためのフレームワークを提案する。
提案するフレームワークは,ニューラルネットワークをトレーニング時間に含めることを保証している。
論文 参考訳(メタデータ) (2024-03-18T08:35:17Z) - Networked Communication for Decentralised Agents in Mean-Field Games [59.01527054553122]
平均フィールドゲームフレームワークにネットワーク通信を導入する。
当社のアーキテクチャは、中央集権型と独立した学習ケースの双方で保証されていることを証明しています。
論文 参考訳(メタデータ) (2023-06-05T10:45:39Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
強化学習 (Reinforcement Learning, RL) は, 意思決定および最適制御プロセスのための有望な解法として広く研究されている。
本稿では,Adaptive ADMM (asI-ADMM)アルゴリズムを提案する。
実験の結果,提案アルゴリズムは通信コストやスケーラビリティの観点から技術状況よりも優れており,複雑なIoT環境に適応できることがわかった。
論文 参考訳(メタデータ) (2021-06-30T16:49:07Z) - Decentralized Deep Learning using Momentum-Accelerated Consensus [15.333413663982874]
複数のエージェントが協調して分散データセットから学習する分散ディープラーニングの問題を考える。
本稿では,エージェントが固定された通信トポロジ上で対話する分散ディープラーニングアルゴリズムを提案し,解析する。
本アルゴリズムは,勾配に基づくプロトコルで用いられるヘビーボール加速度法に基づく。
論文 参考訳(メタデータ) (2020-10-21T17:39:52Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
分散通信方式の統一収束解析を導入する。
いくつかの応用に対して普遍収束率を導出する。
私たちの証明は弱い仮定に依存している。
論文 参考訳(メタデータ) (2020-03-23T17:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。