論文の概要: ForgeLens: Data-Efficient Forgery Focus for Generalizable Forgery Image Detection
- arxiv url: http://arxiv.org/abs/2408.13697v2
- Date: Mon, 30 Jun 2025 00:08:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.374062
- Title: ForgeLens: Data-Efficient Forgery Focus for Generalizable Forgery Image Detection
- Title(参考訳): ForgeLens: 汎用フォージェリイメージ検出のためのデータ効率の良いフォージェリフォーカス
- Authors: Yingjian Chen, Lei Zhang, Yakun Niu,
- Abstract要約: 画像認識のためのデータ効率の良い特徴ガイダンスフレームワークであるForgeLensを提案する。
WSGMはトレーニング中に偽造特有の特徴の抽出をガイドする。
FAFormerはマルチステージ機能にまたがって偽情報を統合する。
- 参考スコア(独自算出の注目度): 6.729135941888995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of generative models has raised concerns about image authenticity online, highlighting the urgent need for a detector that is (1) highly generalizable, capable of handling unseen forgery techniques, and (2) data-efficient, achieving optimal performance with minimal training data, enabling it to counter newly emerging forgery techniques effectively. To achieve this, we propose ForgeLens, a data-efficient, feature-guided framework that incorporates two lightweight designs to enable a frozen network to focus on forgery-specific features. First, we introduce the Weight-Shared Guidance Module (WSGM), which guides the extraction of forgery-specific features during training. Second, a forgery-aware feature integrator, FAFormer, is used to effectively integrate forgery information across multi-stage features. ForgeLens addresses a key limitation of previous frozen network-based methods, where general-purpose features extracted from large datasets often contain excessive forgery-irrelevant information. As a result, it achieves strong generalization and reaches optimal performance with minimal training data. Experimental results on 19 generative models, including both GANs and diffusion models, demonstrate improvements of 13.61% in Avg.Acc and 8.69% in Avg.AP over the base model. Notably, ForgeLens outperforms existing forgery detection methods, achieving state-of-the-art performance with just 1% of the training data. Our code is available at https://github.com/Yingjian-Chen/ForgeLens.
- Abstract(参考訳): 生成モデルの台頭により、画像の信頼性に対する懸念が高まり、(1)高度に一般化可能で、見知らぬ偽造技術を扱うことができる検出器、(2)データ効率が向上し、最小限のトレーニングデータで最適な性能を実現し、新たに出現する偽造技術に効果的に対応できる検出器の必要性が浮き彫りになってきた。
これを実現するために,フリーズネットワークがフォージェリ特有の機能に集中できるように,2つの軽量な設計を取り入れたデータ効率の高い機能誘導フレームワークForgeLensを提案する。
まず、トレーニング中に偽物固有の特徴の抽出をガイドするWSGM(Weight-Shared Guidance Module)を導入する。
第二に、偽造認識機能インテグレータであるFAFormerは、マルチステージ機能間で偽造情報を効果的に統合するために使用される。
ForgeLensは、大規模なデータセットから抽出された汎用機能は、しばしば過剰な偽情報を含む、以前の凍結されたネットワークベースのメソッドの鍵となる制限に対処する。
結果として、強力な一般化を実現し、最小限のトレーニングデータで最適性能に達する。
GANと拡散モデルの両方を含む19の生成モデルの実験結果は、Avg.Accでは13.61%、Avg.APでは8.69%の改善を示した。
特に、ForgeLensは既存の偽造検出方法よりも優れており、トレーニングデータのわずか1%で最先端のパフォーマンスを実現している。
私たちのコードはhttps://github.com/Yingjian-Chen/ForgeLens.comで公開されています。
関連論文リスト
- DFCon: Attention-Driven Supervised Contrastive Learning for Robust Deepfake Detection [0.3818645814949463]
本報告では, IEEE SP Cup 2025: Deepfake Face Detection in the Wild (DFWild-Cup) へのアプローチについて述べる。
提案手法では,MaxViT,CoAtNet,EVA-02などの高度なバックボーンモデルを用いて,教師付きコントラスト損失を用いて微調整を行い,特徴分離を向上させる。
提案システムは,実環境下でのディープフェイク検出の課題に対処し,検証データセットで95.83%の精度を実現する。
論文 参考訳(メタデータ) (2025-01-28T04:46:50Z) - $\textit{X}^2$-DFD: A framework for e${X}$plainable and e${X}$tendable Deepfake Detection [52.14468236527728]
3つのコアモジュールからなる新しいフレームワークX2$-DFDを提案する。
最初のモジュールであるモデル特徴評価(MFA)は、MLLMに固有の偽機能の検出能力を計測し、これらの機能の下位ランキングを提供する。
第2のモジュールであるStrong Feature Strengthening (SFS)は、上位機能に基づいて構築されたデータセット上でMLLMを微調整することで、検出と説明機能を強化する。
第3のモジュールであるWak Feature Supplementing (WFS)は、外部専用の機能を統合することで、低階機能における微調整MLLMの機能を改善する。
論文 参考訳(メタデータ) (2024-10-08T15:28:33Z) - Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection [16.21235742118949]
本稿では,よく訓練された視覚言語モデル(VLM)を一般深度検出に活用する手法を提案する。
入力摂動によってモデル予測を操作するモデル再プログラミングパラダイムにより,本手法はトレーニング済みのVLMモデルを再プログラムすることができる。
いくつかの人気のあるベンチマークデータセットの実験では、ディープフェイク検出のクロスデータセットとクロスマニピュレーションのパフォーマンスが大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2024-09-04T12:46:30Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - AMFD: Distillation via Adaptive Multimodal Fusion for Multispectral Pedestrian Detection [23.91870504363899]
マルチスペクトル検出におけるダブルストリームネットワークは、マルチモーダルデータに2つの異なる特徴抽出枝を用いる。
これにより、組み込みデバイスにおける多スペクトル歩行者検出が自律システムに広く採用されるのを妨げている。
本稿では,教師ネットワークの本来のモーダル特徴を完全に活用できる適応型モーダル核融合蒸留(AMFD)フレームワークについて紹介する。
論文 参考訳(メタデータ) (2024-05-21T17:17:17Z) - Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7ワンステージ検出器は、新しいメタラーニングトレーニングフレームワークが組み込まれている。
この変換により、検出器はFSODのタスクに十分対応できると同時に、その固有の軽量化の利点を活かすことができる。
提案検出器の有効性を検証するため, 現状の検出器と性能比較を行った。
論文 参考訳(メタデータ) (2024-04-29T04:56:52Z) - MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
ディープフェイクは、最近、国民の間で重大な信頼問題とセキュリティ上の懸念を提起した。
ViT法はトランスの表現性を生かし,優れた検出性能を実現する。
この研究は、汎用的でパラメータ効率のよいViTベースのアプローチであるFace Forgery Detection (MoE-FFD)のためのMixture-of-Expertsモジュールを導入する。
論文 参考訳(メタデータ) (2024-04-12T13:02:08Z) - Towards More General Video-based Deepfake Detection through Facial Feature Guided Adaptation for Foundation Model [15.61920157541529]
内部にリッチな情報をエンコードしたファンデーションモデルを適用することにより,新しいディープフェイク検出手法を提案する。
近年のパラメータ効率の良い微調整技術に触発されて,新しいサイドネットワーク型デコーダを提案する。
提案手法は,見知らぬディープフェイクサンプルの同定に優れた有効性を示し,顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2024-04-08T14:58:52Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection [73.66077273888018]
既存のディープフェイク検出方法は、目に見えない、または劣化したサンプルに対してうまく一般化できない。
高レベルのセマンティクスは、一般化可能な偽造検出に必要なレシピである。
DeepFake-Adapterは、DeepFake検出のためのパラメータ効率の高い最初のチューニング手法である。
論文 参考訳(メタデータ) (2023-06-01T16:23:22Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
Inference-aware Feature Filtering (IFF)モジュールを導入し、現代の検出器と簡単に組み合わせることができる。
IFFは、畳み込み機能を強化するためにハイレベルなセマンティクスを活用することでクローズドループ最適化を行う。
IFFはCNNベースの物体検出器とプラグアンドプレイ方式で融合でき、計算コストのオーバーヘッドは無視できる。
論文 参考訳(メタデータ) (2020-06-23T02:57:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。