論文の概要: Localization and Expansion: A Decoupled Framework for Point Cloud Few-shot Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2408.13752v1
- Date: Sun, 25 Aug 2024 07:34:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:00:02.888318
- Title: Localization and Expansion: A Decoupled Framework for Point Cloud Few-shot Semantic Segmentation
- Title(参考訳): ローカライゼーションと拡張 - Point Cloud Few-shot Semantic Segmentationのための分離フレームワーク
- Authors: Zhaoyang Li, Yuan Wang, Wangkai Li, Rui Sun, Tianzhu Zhang,
- Abstract要約: Point Cloud few-shot semantic segmentation (PC-FSS)は、特定のクエリポイントクラウドに、いくつかのアノテーション付きのサポートサンプルで、新しいカテゴリのターゲットをセグメントすることを目的としている。
本稿では,DLE(Decoupled Localization and Expansion)の精神における,シンプルで効果的な枠組みを提案する。
構造的ローカライゼーションモジュール(SLM)と自己拡張モジュール(SEM)を含むDLEは、いくつかのメリットを享受している。
- 参考スコア(独自算出の注目度): 39.7657197805346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud few-shot semantic segmentation (PC-FSS) aims to segment targets of novel categories in a given query point cloud with only a few annotated support samples. The current top-performing prototypical learning methods employ prototypes originating from support samples to direct the classification of query points. However, the inherent fragility of point-level matching and the prevalent intra-class diversity pose great challenges to this cross-instance matching paradigm, leading to erroneous background activations or incomplete target excavation. In this work, we propose a simple yet effective framework in the spirit of Decoupled Localization and Expansion (DLE). The proposed DLE, including a structural localization module (SLM) and a self-expansion module (SEM), enjoys several merits. First, structural information is injected into the matching process through the agent-level correlation in SLM, and the confident target region can thus be precisely located. Second, more reliable intra-object similarity is harnessed in SEM to derive the complete target, and the conservative expansion strategy is introduced to reasonably constrain the expansion. Extensive experiments on two challenging benchmarks under different settings demonstrate that DLE outperforms previous state-of-the-art approaches by large margins.
- Abstract(参考訳): Point Cloud few-shot semantic segmentation (PC-FSS)は、指定されたクエリポイントクラウドに、いくつかのアノテーション付きのサポートサンプルで、新しいカテゴリのターゲットをセグメントすることを目的としている。
現在のトップパフォーマンスのプロトタイプ学習手法では、サポートサンプルから派生したプロトタイプを用いてクエリポイントの分類を指示している。
しかし、点レベルのマッチングとクラス内多様性の出現は、このクロスインスタンスマッチングパラダイムに大きな課題をもたらし、誤ったバックグラウンドアクティベーションや不完全なターゲット発掘につながる。
本稿では,DLE(Decoupled Localization and Expansion)の精神において,シンプルながら効果的なフレームワークを提案する。
構造的局所化モジュール(SLM)と自己拡張モジュール(SEM)を含む提案されたDLEは、いくつかのメリットを享受している。
まず、SLMにおけるエージェントレベルの相関を通じて、構造情報をマッチングプロセスに注入し、確実な目標領域を正確に特定することができる。
第二に、SEMにおいてより信頼性の高いオブジェクト内類似性を利用して完全な目標を導出し、その拡張を合理的に抑制するために保守的な拡張戦略を導入する。
異なる設定下での2つの挑戦的なベンチマークに関する大規模な実験は、DLEが従来の最先端のアプローチよりも大きなマージンで優れていることを示している。
関連論文リスト
- Task Consistent Prototype Learning for Incremental Few-shot Semantic Segmentation [20.49085411104439]
Incrmental Few-Shot Semantic (iFSS)は、新しいクラスにおけるセグメンテーション能力を継続的に拡張するモデルを必要とするタスクに取り組む。
本研究では,メタラーニングに基づくプロトタイプ手法を導入し,モデルに事前知識を保ちながら,迅速な適応方法の学習を促す。
PASCALとCOCOベンチマークに基づいて構築されたiFSSデータセットの実験は、提案手法の高度な性能を示している。
論文 参考訳(メタデータ) (2024-10-16T23:42:27Z) - Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
少ないショットセグメンテーションは、注釈付き画像のみを提供する新しいタスクに迅速に適応できるセグメンテーションモデルをトレーニングすることを目的としている。
本稿では,対象オブジェクトの相対的サイズに基づいて,サポートイメージを拡大するIDA戦略を提案する。
提案したIDAは,サポートセットの多様性を効果的に向上し,サポートイメージとクエリイメージ間の分散一貫性を促進する。
論文 参考訳(メタデータ) (2024-01-18T10:29:10Z) - P2Seg: Pointly-supervised Segmentation via Mutual Distillation [23.979786026101024]
実例位置と意味情報の相補的強度を利用するための相互蒸留モジュール(MDM)を開発した。
提案手法は,PASCAL VOCおよびMS COCOデータセット上で55.7 mAP$_50$と17.6 mAPを達成する。
論文 参考訳(メタデータ) (2024-01-18T03:41:38Z) - Lidar Panoptic Segmentation and Tracking without Bells and Whistles [48.078270195629415]
ライダーセグメンテーションと追跡のための検出中心ネットワークを提案する。
私たちのネットワークのコアコンポーネントの1つは、オブジェクトインスタンス検出ブランチです。
提案手法を複数の3D/4D LPSベンチマークで評価し,我々のモデルがオープンソースモデル間で新たな最先端性を確立することを確認した。
論文 参考訳(メタデータ) (2023-10-19T04:44:43Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
少ないショットのセグメンテーションは、少数の濃密なラベル付けされたサンプルのみを与えられた、目に見えないクラスオブジェクトをセグメンテーションすることを目的としている。
分割・分散の精神において, 単純かつ多目的な枠組みを提案する。
提案手法は、DCP(disvision-and-conquer proxies)と呼ばれるもので、適切な信頼性のある情報の開発を可能にする。
論文 参考訳(メタデータ) (2022-04-21T06:21:14Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
本稿では,WSOLの畳み込み機能に組み込まれた構造情報を完全に活用するための2段階構造保存アクティベーション(SPA)を提案する。
第1段階では、分類ネットワークによって引き起こされる構造ミス問題を軽減するために制限アクティベーションモジュール(ram)が設計されている。
第2段階では, 自己相関マップ生成(SCG)モジュールと呼ばれるプロセス後アプローチを提案し, 構造保存ローカライゼーションマップを得る。
論文 参考訳(メタデータ) (2021-03-08T03:04:14Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。