論文の概要: Task Consistent Prototype Learning for Incremental Few-shot Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2410.13094v1
- Date: Wed, 16 Oct 2024 23:42:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:21:30.103223
- Title: Task Consistent Prototype Learning for Incremental Few-shot Semantic Segmentation
- Title(参考訳): インクリメンタル・ショット・セマンティック・セマンティック・セグメンテーションのためのタスク一貫性型プロトタイプ学習
- Authors: Wenbo Xu, Yanan Wu, Haoran Jiang, Yang Wang, Qiang Wu, Jian Zhang,
- Abstract要約: Incrmental Few-Shot Semantic (iFSS)は、新しいクラスにおけるセグメンテーション能力を継続的に拡張するモデルを必要とするタスクに取り組む。
本研究では,メタラーニングに基づくプロトタイプ手法を導入し,モデルに事前知識を保ちながら,迅速な適応方法の学習を促す。
PASCALとCOCOベンチマークに基づいて構築されたiFSSデータセットの実験は、提案手法の高度な性能を示している。
- 参考スコア(独自算出の注目度): 20.49085411104439
- License:
- Abstract: Incremental Few-Shot Semantic Segmentation (iFSS) tackles a task that requires a model to continually expand its segmentation capability on novel classes using only a few annotated examples. Typical incremental approaches encounter a challenge that the objective of the base training phase (fitting base classes with sufficient instances) does not align with the incremental learning phase (rapidly adapting to new classes with less forgetting). This disconnect can result in suboptimal performance in the incremental setting. This study introduces a meta-learning-based prototype approach that encourages the model to learn how to adapt quickly while preserving previous knowledge. Concretely, we mimic the incremental evaluation protocol during the base training session by sampling a sequence of pseudo-incremental tasks. Each task in the simulated sequence is trained using a meta-objective to enable rapid adaptation without forgetting. To enhance discrimination among class prototypes, we introduce prototype space redistribution learning, which dynamically updates class prototypes to establish optimal inter-prototype boundaries within the prototype space. Extensive experiments on iFSS datasets built upon PASCAL and COCO benchmarks show the advanced performance of the proposed approach, offering valuable insights for addressing iFSS challenges.
- Abstract(参考訳): Incrmental Few-Shot Semantic Segmentation (iFSS)は、いくつかの注釈付き例を使って、新しいクラスでのセグメンテーション能力を継続的に拡張するモデルを必要とするタスクに取り組む。
典型的なインクリメンタルアプローチは、ベーストレーニングフェーズ(十分なインスタンスでベースクラスを適合させる)の目的が、インクリメンタルな学習フェーズ(忘れることなく新しいクラスに適応すること)と一致しないという課題に直面します。
この切断は、インクリメンタルな設定において、最適以下のパフォーマンスをもたらす可能性がある。
本研究では,メタラーニングに基づくプロトタイプ手法を導入し,モデルに事前知識を保ちながら,迅速な適応方法の学習を促す。
具体的には、疑似インクリメンタルタスクのシーケンスをサンプリングすることにより、ベーストレーニングセッション中にインクリメンタルな評価プロトコルを模倣する。
シミュレーションシーケンスの各タスクは、メタオブジェクトを使用してトレーニングされ、忘れずに迅速に適応できる。
そこで本研究では,プロトタイプ空間内でのプロトタイプ間の最適境界を確立するために,クラスプロトタイプを動的に更新するプロトタイプ空間再分配学習を導入する。
PASCALとCOCOベンチマークに基づいて構築されたiFSSデータセットに関する大規模な実験は、提案されたアプローチの高度なパフォーマンスを示し、iFSSの課題に対処するための貴重な洞察を提供する。
関連論文リスト
- Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - KOPPA: Improving Prompt-based Continual Learning with Key-Query
Orthogonal Projection and Prototype-based One-Versus-All [26.506535205897443]
本稿では,新しいキークエリ学習戦略を導入し,マッチング効率を向上し,機能変更の課題に対処する。
提案手法は,現在の最先端手法を最大20%の差で超えた結果を達成するためのモデルである。
論文 参考訳(メタデータ) (2023-11-26T20:35:19Z) - Test-Time Training for Semantic Segmentation with Output Contrastive
Loss [12.535720010867538]
ディープラーニングベースのセグメンテーションモデルは、公開ベンチマークで印象的なパフォーマンスを達成したが、目に見えない環境にうまく一般化することは、依然として大きな課題である。
本稿では、適応過程を安定させるために、頑健で一般化された表現を学習する能力で知られるコントラストロス(OCL)を紹介する。
本手法は,テスト領域データに対するドメイン適応法を用いて事前学習したモデルに適用した場合においても優れ,そのレジリエンスと適応性を示す。
論文 参考訳(メタデータ) (2023-11-14T03:13:47Z) - Harmonizing Base and Novel Classes: A Class-Contrastive Approach for
Generalized Few-Shot Segmentation [78.74340676536441]
本稿では,プロトタイプの更新を規制し,プロトタイプ間の距離を広くするために,クラス間のコントラスト損失とクラス関係損失を提案する。
提案手法は,PASCAL VOC および MS COCO データセット上での一般化された小ショットセグメンテーションタスクに対して,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-03-24T00:30:25Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
転送学習アプローチは、最近、数ショット検出タスクで有望な結果を得た。
これらのアプローチは、ベース検出器の微調整による破滅的な忘れ込みの問題に悩まされる。
この作業における上記の問題に対処する。
論文 参考訳(メタデータ) (2022-10-10T20:31:19Z) - Sequential Ensembling for Semantic Segmentation [4.030520171276982]
我々は、複数の独立に訓練された最先端モデルの予測を組み合わせる一般的なアンサンブルアプローチをベンチマークする。
そこで本研究では,素なアンサンブルベースラインを大幅に上回る,逐次アンサンブルネットワークの強化にインスパイアされた新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-08T22:13:59Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
拡張埋め込み(CPLAE)モデルを用いた新しいコントラスト型プロトタイプ学習を提案する。
クラスプロトタイプをアンカーとして、CPLは、同じクラスのクエリサンプルを、異なるクラスのサンプルを、さらに遠くに引き出すことを目的としている。
いくつかのベンチマークによる大規模な実験により,提案したCPLAEが新たな最先端を実現することが示された。
論文 参考訳(メタデータ) (2021-01-23T13:22:44Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
最先端のセマンティックセグメンテーション手法は、良い結果を得るために十分なラベル付きデータを必要とする。
少数のラベル付きサポートサンプルを持つ新しいクラスに迅速に適応するモデルを学習することで,この問題に対処するためのショットセグメンテーションが提案されている。
これらのフレームワークは、高レベルのセマンティック情報の不適切な使用により、目に見えないクラスにおける一般化能力の低下という課題に直面している。
論文 参考訳(メタデータ) (2020-08-04T10:41:32Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。