論文の概要: Revisiting the Exit from Nuclear Energy in Germany with NLP
- arxiv url: http://arxiv.org/abs/2408.13810v1
- Date: Sun, 25 Aug 2024 11:13:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 17:49:53.832992
- Title: Revisiting the Exit from Nuclear Energy in Germany with NLP
- Title(参考訳): NLPによるドイツにおける原子力廃止の見直し
- Authors: Sebastian Haunss, André Blessing,
- Abstract要約: 微調整されたトランスフォーマーベースのモデルは、アノテーションタスクにおいて人間のアノテータより優れている。
コントリビューションでは、手動でアノテートされたデータセットが、今日のNLPメソッドで自動的に複製される程度について調べる。
- 参考スコア(独自算出の注目度): 2.5431639270552333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Annotation of political discourse is resource-intensive, but recent developments in NLP promise to automate complex annotation tasks. Fine-tuned transformer-based models outperform human annotators in some annotation tasks, but they require large manually annotated training datasets. In our contribution, we explore to which degree a manually annotated dataset can be automatically replicated with today's NLP methods, using unsupervised machine learning and zero- and few-shot learning.
- Abstract(参考訳): 政治談話の注釈は資源集約的であるが、最近のNLPの発展は複雑なアノテーションタスクを自動化することを約束している。
微調整されたトランスフォーマーベースのモデルは、アノテーションタスクにおいて人間のアノテーションよりも優れているが、大規模な手動のトレーニングデータセットが必要である。
コントリビューションでは、教師なし機械学習とゼロショット学習と少数ショット学習を使用して、手動でアノテートされたデータセットが今日のNLPメソッドで自動的に複製される程度を調査する。
関連論文リスト
- Zero-shot prompt-based classification: topic labeling in times of foundation models in German Tweets [1.734165485480267]
そこで,本論文では,文章ガイドラインを用いてテキストを自動的に注釈付けするツールについて,トレーニングサンプルを提供することなく提案する。
提案手法は細調整されたBERTに匹敵するが,アノテートしたトレーニングデータはない。
本研究は,NLPランドスケープにおける進行中のパラダイムシフト,すなわち下流タスクの統一と事前ラベル付きトレーニングデータの必要性の排除を強調した。
論文 参考訳(メタデータ) (2024-06-26T10:44:02Z) - Zero-shot LLM-guided Counterfactual Generation: A Case Study on NLP Model Evaluation [15.254775341371364]
ゼロショット対実生成に大規模言語モデルを活用する可能性について検討する。
我々は,この生成を容易にするための構造化パイプラインを提案し,近年のLLMにおける命令追従とテキスト理解の能力を効果的に活用できるという仮説を立てた。
論文 参考訳(メタデータ) (2024-05-08T03:57:45Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - KnowDA: All-in-One Knowledge Mixture Model for Data Augmentation in
Few-Shot NLP [68.43279384561352]
既存のデータ拡張アルゴリズムはタスク非依存のルールや微調整の汎用事前訓練言語モデルを利用する。
これらの手法は、簡単なタスク固有の知識を持ち、単純なタスクにおいて弱いベースラインのための低品質な合成データを得るに限られる。
我々は,様々なNLPタスクを予め学習したエンコーダ/デコーダLMの知識混合データ拡張モデル(KnowDA)を提案する。
論文 参考訳(メタデータ) (2022-06-21T11:34:02Z) - Leveraging Pre-Trained Language Models to Streamline Natural Language
Interaction for Self-Tracking [25.28975864365579]
本研究では,自己追跡のための新たなNLPタスクを提案する。
このフレームワークは、合成サンプルを使用してタスクを10ショットの学習に変換するプロンプトを強化し、新しいトラッキングトピックをブートストラップする際のコールドスタート問題に対処する。
論文 参考訳(メタデータ) (2022-05-31T01:58:04Z) - Training Naturalized Semantic Parsers with Very Little Data [10.709587018625275]
State-of-the-art(SOTA)セマンティクスは、大量のテキストに基づいて事前訓練された大規模な言語モデルに基づくセク2セックアーキテクチャである。
最近の研究は意味解析の改革を探求しており、出力シーケンスはそれ自体が自然言語文である。
本手法は,Overnightデータセット上で新たなSOTA数ショット性能を実現する。
論文 参考訳(メタデータ) (2022-04-29T17:14:54Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
PLMの継続事前学習のための外部データを適応的に検索するAdaPromptを提案する。
5つのNLPベンチマークの実験結果から、AdaPromptは数ショット設定で標準PLMよりも改善可能であることが示された。
ゼロショット設定では、標準のプロンプトベースの手法を26.35%の相対誤差削減で上回ります。
論文 参考訳(メタデータ) (2022-02-10T04:04:57Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Automated essay scoring using efficient transformer-based language
models [0.5161531917413708]
Automated Essay Scoring(AES)は、教育、言語学、自然言語処理(NLP)を含む学際的な取り組みです。
大規模なプリトレーニングトランスフォーマーベースの言語モデルは、多くのNLPタスクで現在の最先端を支配しています。
この論文は、AESに関しては、より大きなNLPのパラダイムに挑むことを目的としています。
論文 参考訳(メタデータ) (2021-02-25T19:28:39Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。