論文の概要: Collaborative Perception in Multi-Robot Systems: Case Studies in Household Cleaning and Warehouse Operations
- arxiv url: http://arxiv.org/abs/2408.14039v1
- Date: Mon, 26 Aug 2024 06:22:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:52:59.870402
- Title: Collaborative Perception in Multi-Robot Systems: Case Studies in Household Cleaning and Warehouse Operations
- Title(参考訳): マルチロボットシステムにおける協調的認識:家事清掃・倉庫業務を事例として
- Authors: Bharath Rajiv Nair,
- Abstract要約: コラボレーティブ・パーセプション(Collaborative Perception, CP)は、環境内の複数のロボットとセンサーがセンサーデータを共有し、統合して周囲の包括的な表現を構築する場所である。
マルチロボットシステムにおける協調認識の利点を示す2つのケーススタディが提示された。
- 参考スコア(独自算出の注目度): 0.7832189413179361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the paradigm of Collaborative Perception (CP), where multiple robots and sensors in the environment share and integrate sensor data to construct a comprehensive representation of the surroundings. By aggregating data from various sensors and utilizing advanced algorithms, the collaborative perception framework improves task efficiency, coverage, and safety. Two case studies are presented to showcase the benefits of collaborative perception in multi-robot systems. The first case study illustrates the benefits and advantages of using CP for the task of household cleaning with a team of cleaning robots. The second case study performs a comparative analysis of the performance of CP versus Standalone Perception (SP) for Autonomous Mobile Robots operating in a warehouse environment. The case studies validate the effectiveness of CP in enhancing multi-robot coordination, task completion, and overall system performance and its potential to impact operations in other applications as well. Future investigations will focus on optimizing the framework and validating its performance through empirical testing.
- Abstract(参考訳): 本稿では,環境中の複数のロボットやセンサがセンサデータを共有し,統合して周囲の包括的表現を構築する,協調知覚(CP)のパラダイムを考察する。
各種センサからのデータを集約し、高度なアルゴリズムを活用することにより、協調認識フレームワークはタスク効率、カバレッジ、安全性を向上させる。
マルチロボットシステムにおける協調認識の利点を示す2つのケーススタディが提示された。
最初のケーススタディでは、掃除ロボットのチームによる家庭用清掃作業にCPを使用することの利点と利点が示されている。
第2のケーススタディでは,倉庫環境で動作する自律移動ロボットにおけるCP対スタンドアローン知覚(SP)の性能の比較分析を行った。
ケーススタディでは、マルチロボット調整、タスク完了、システム全体の性能向上におけるCPの有効性と、他のアプリケーションでの運用にも影響を与える可能性を検証した。
今後の調査では、フレームワークの最適化と、経験的テストによるパフォーマンス検証に注力する予定である。
関連論文リスト
- R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models [50.19174067263255]
我々は、エージェントがスパース・リワード、継続的なアクション、ゴールベースのロボット制御POMDP環境においてエクササイズするのを助けるために、事前の選好学習手法と自己修正スケジュールを導入する。
我々のエージェントは、累積報酬、相対安定性、成功率の観点から、最先端モデルよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-09-21T18:32:44Z) - CoPeD-Advancing Multi-Robot Collaborative Perception: A Comprehensive Dataset in Real-World Environments [8.177157078744571]
本稿では,先駆的で包括的な実世界のマルチロボット協調認識データセットを提案する。
生のセンサー入力、ポーズ推定、オプションのハイレベル認識アノテーションが特徴である。
この研究は、マルチロボット設定におけるマルチモーダル協調認識を通して、ハイレベルなシーン理解の潜在的研究を解き放つだろうと考えている。
論文 参考訳(メタデータ) (2024-05-23T15:59:48Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
大規模言語モデル(LLM)は、ユーザが仕事を達成するのを助けるアシスタントとして機能し、高度なアプリケーションの開発をサポートする。
LLMの幅広い応用にとって、推論効率は重要な問題であり、既存の研究で広く研究されている。
各種コードライブラリの推論性能の粗大な解析を行う。
論文 参考訳(メタデータ) (2024-04-17T15:57:50Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Learning Action-Effect Dynamics for Hypothetical Vision-Language
Reasoning Task [50.72283841720014]
本研究では,行動の効果に関する推論を改善する新しい学習戦略を提案する。
本稿では,提案手法の有効性を実証し,性能,データ効率,一般化能力の観点から,従来のベースラインに対する優位性を論じる。
論文 参考訳(メタデータ) (2022-12-07T05:41:58Z) - Multi-robot Social-aware Cooperative Planning in Pedestrian Environments
Using Multi-agent Reinforcement Learning [2.7716102039510564]
我々は、非政治的マルチエージェント強化学習(MARL)に基づく、新しいマルチロボット・ソーシャル・アウェア・効率的な協調プランナーを提案する。
我々は、時間空間グラフ(TSG)に基づくソーシャルエンコーダを採用し、その視野における各ロボットと歩行者の社会的関係の重要性をよりよく抽出する。
論文 参考訳(メタデータ) (2022-11-29T03:38:47Z) - SAGCI-System: Towards Sample-Efficient, Generalizable, Compositional,
and Incremental Robot Learning [41.19148076789516]
上記の4つの要件を満たすために,SAGCIシステムと呼ばれる体系的な学習フレームワークを導入する。
本システムはまず,ロボットの手首に搭載されたカメラによって収集された生点雲を入力とし,URDFに代表される周囲環境の初期モデリングを生成する。
そのロボットは、対話的な知覚を利用して環境と対話し、URDFのオンライン検証と修正を行う。
論文 参考訳(メタデータ) (2021-11-29T16:53:49Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Shared Space Transfer Learning for analyzing multi-site fMRI data [83.41324371491774]
マルチボクセルパターン解析(MVPA)は、タスクベース機能磁気共鳴画像(fMRI)データから予測モデルを学習する。
MVPAはよく設計された機能セットと十分なサンプルサイズで機能する。
ほとんどのfMRIデータセットはノイズが多く、高次元で、収集するのに高価で、サンプルサイズも小さい。
本稿では,新しい伝達学習手法として共有空間移動学習(SSTL)を提案する。
論文 参考訳(メタデータ) (2020-10-24T08:50:26Z) - Collaborative Multi-Robot Systems for Search and Rescue: Coordination
and Perception [16.850204497272205]
マルチロボットシステムは、捜索救助員の効率を大幅に改善する可能性がある。
本稿では,マルチロボットSARサポートに対する既存のアプローチをレビューし,分析する。
これらのアルゴリズムは、様々な種類のロボットが異なるSAR環境で遭遇する様々な課題と制約の文脈に置かれる。
論文 参考訳(メタデータ) (2020-08-28T12:28:32Z) - Predicting Sample Collision with Neural Networks [5.713670854553366]
本稿では,サンプリングベース動作計画における高価なプリミティブ操作のコストに対処する枠組みを提案する。
我々は,2次元および3次元の作業空間における多様なロボットによる複数計画問題の枠組みを評価する。
論文 参考訳(メタデータ) (2020-06-30T14:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。