Collaborative Perception in Multi-Robot Systems: Case Studies in Household Cleaning and Warehouse Operations
- URL: http://arxiv.org/abs/2408.14039v1
- Date: Mon, 26 Aug 2024 06:22:54 GMT
- Title: Collaborative Perception in Multi-Robot Systems: Case Studies in Household Cleaning and Warehouse Operations
- Authors: Bharath Rajiv Nair,
- Abstract summary: Collaborative Perception (CP) is where multiple robots and sensors in the environment share and integrate sensor data to construct a comprehensive representation of the surroundings.
Two case studies are presented to showcase the benefits of collaborative perception in multi-robot systems.
- Score: 0.7832189413179361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the paradigm of Collaborative Perception (CP), where multiple robots and sensors in the environment share and integrate sensor data to construct a comprehensive representation of the surroundings. By aggregating data from various sensors and utilizing advanced algorithms, the collaborative perception framework improves task efficiency, coverage, and safety. Two case studies are presented to showcase the benefits of collaborative perception in multi-robot systems. The first case study illustrates the benefits and advantages of using CP for the task of household cleaning with a team of cleaning robots. The second case study performs a comparative analysis of the performance of CP versus Standalone Perception (SP) for Autonomous Mobile Robots operating in a warehouse environment. The case studies validate the effectiveness of CP in enhancing multi-robot coordination, task completion, and overall system performance and its potential to impact operations in other applications as well. Future investigations will focus on optimizing the framework and validating its performance through empirical testing.
Related papers
- R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models [50.19174067263255]
We introduce prior preference learning techniques and self-revision schedules to help the agent excel in sparse-reward, continuous action, goal-based robotic control POMDP environments.
We show that our agents offer improved performance over state-of-the-art models in terms of cumulative rewards, relative stability, and success rate.
arXiv Detail & Related papers (2024-09-21T18:32:44Z) - CoPeD-Advancing Multi-Robot Collaborative Perception: A Comprehensive Dataset in Real-World Environments [8.177157078744571]
This paper presents a pioneering and comprehensive real-world multi-robot collaborative perception dataset.
It features raw sensor inputs, pose estimation, and optional high-level perception annotation.
We believe this work will unlock the potential research of high-level scene understanding through multi-modal collaborative perception in multi-robot settings.
arXiv Detail & Related papers (2024-05-23T15:59:48Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
Large language models (LLMs) can serve as the assistant to help users accomplish their jobs, and also support the development of advanced applications.
For the wide application of LLMs, the inference efficiency is an essential concern, which has been widely studied in existing work.
We perform a detailed coarse-to-fine analysis of the inference performance of various code libraries.
arXiv Detail & Related papers (2024-04-17T15:57:50Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Learning Action-Effect Dynamics for Hypothetical Vision-Language
Reasoning Task [50.72283841720014]
We propose a novel learning strategy that can improve reasoning about the effects of actions.
We demonstrate the effectiveness of our proposed approach and discuss its advantages over previous baselines in terms of performance, data efficiency, and generalization capability.
arXiv Detail & Related papers (2022-12-07T05:41:58Z) - Multi-robot Social-aware Cooperative Planning in Pedestrian Environments
Using Multi-agent Reinforcement Learning [2.7716102039510564]
We propose a novel multi-robot social-aware efficient cooperative planner that on the basis of off-policy multi-agent reinforcement learning (MARL)
We adopt temporal-spatial graph (TSG)-based social encoder to better extract the importance of social relation between each robot and the pedestrians in its field of view (FOV)
arXiv Detail & Related papers (2022-11-29T03:38:47Z) - SAGCI-System: Towards Sample-Efficient, Generalizable, Compositional,
and Incremental Robot Learning [41.19148076789516]
We introduce a systematic learning framework called SAGCI-system towards achieving the above four requirements.
Our system first takes the raw point clouds gathered by the camera mounted on the robot's wrist as the inputs and produces initial modeling of the surrounding environment represented as a URDF.
The robot then utilizes the interactive perception to interact with the environments to online verify and modify the URDF.
arXiv Detail & Related papers (2021-11-29T16:53:49Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Shared Space Transfer Learning for analyzing multi-site fMRI data [83.41324371491774]
Multi-voxel pattern analysis (MVPA) learns predictive models from task-based functional magnetic resonance imaging (fMRI) data.
MVPA works best with a well-designed feature set and an adequate sample size.
Most fMRI datasets are noisy, high-dimensional, expensive to collect, and with small sample sizes.
This paper proposes the Shared Space Transfer Learning (SSTL) as a novel transfer learning approach.
arXiv Detail & Related papers (2020-10-24T08:50:26Z) - Collaborative Multi-Robot Systems for Search and Rescue: Coordination
and Perception [16.850204497272205]
Multi-robot systems have the potential to significantly improve the efficiency of search and rescue personnel.
In this paper, we review and analyze the existing approaches to multi-robot SAR support.
We put these algorithms in the context of the different challenges and constraints that various types of robots encounter in different SAR environments.
arXiv Detail & Related papers (2020-08-28T12:28:32Z) - Predicting Sample Collision with Neural Networks [5.713670854553366]
We present a framework to address the cost of expensive primitive operations in sampling-based motion planning.
We evaluate our framework on multiple planning problems with a variety of robots in 2D and 3D workspaces.
arXiv Detail & Related papers (2020-06-30T14:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.