論文の概要: Bridging the gap between Learning-to-plan, Motion Primitives and Safe Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2408.14063v1
- Date: Mon, 26 Aug 2024 07:44:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:42:59.005440
- Title: Bridging the gap between Learning-to-plan, Motion Primitives and Safe Reinforcement Learning
- Title(参考訳): ラーニング・ツー・プラン, モーション・プリミティブ, セーフ強化学習のギャップを埋める
- Authors: Piotr Kicki, Davide Tateo, Puze Liu, Jonas Guenster, Jan Peters, Krzysztof Walas,
- Abstract要約: キノダイナミック制約の下での軌道計画は、高度なロボティクス応用の基礎となる。
キノダイナミックプランニングの最近の進歩は、複雑な制約の下で複雑な動きを学習・計画技術が生成できることを実証している。
本稿では,学習から計画までの手法と強化学習を組み合わせることで,動作プリミティブのブラックボックス学習と最適化の新たな統合を実現する。
- 参考スコア(独自算出の注目度): 20.158498233576143
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Trajectory planning under kinodynamic constraints is fundamental for advanced robotics applications that require dexterous, reactive, and rapid skills in complex environments. These constraints, which may represent task, safety, or actuator limitations, are essential for ensuring the proper functioning of robotic platforms and preventing unexpected behaviors. Recent advances in kinodynamic planning demonstrate that learning-to-plan techniques can generate complex and reactive motions under intricate constraints. However, these techniques necessitate the analytical modeling of both the robot and the entire task, a limiting assumption when systems are extremely complex or when constructing accurate task models is prohibitive. This paper addresses this limitation by combining learning-to-plan methods with reinforcement learning, resulting in a novel integration of black-box learning of motion primitives and optimization. We evaluate our approach against state-of-the-art safe reinforcement learning methods, showing that our technique, particularly when exploiting task structure, outperforms baseline methods in challenging scenarios such as planning to hit in robot air hockey. This work demonstrates the potential of our integrated approach to enhance the performance and safety of robots operating under complex kinodynamic constraints.
- Abstract(参考訳): キノダイナミック制約下での軌道計画は、複雑な環境において、巧妙で反応性があり、迅速な技術を必要とする高度なロボティクスアプリケーションに基本となる。
これらの制約は、ロボットプラットフォームの適切な機能を確保し、予期せぬ行動を防ぐために必須である。
キノダイナミックプランニングの最近の進歩は、複雑な制約の下で、学習と計画のテクニックが複雑で反応性のある動きを生成できることを実証している。
しかし,これらの手法はロボットとタスク全体の解析的モデリングを必要としており,システムが非常に複雑である場合や,正確なタスクモデルの構築が禁じられている場合の仮定が制限される。
本稿では,学習から計画までの手法と強化学習を組み合わせることで,動作プリミティブのブラックボックス学習と最適化の新たな統合を実現する。
我々は,現在最先端の安全強化学習手法に対するアプローチを評価し,特にタスク構造を利用した場合,ロボットエアホッケーの打倒計画などの課題において,ベースライン手法よりも優れていることを示す。
本研究は,複雑なキノダイナミック制約下で動作するロボットの性能と安全性を高めるための統合的アプローチの可能性を示す。
関連論文リスト
- Safe Reinforcement Learning on the Constraint Manifold: Theory and Applications [21.98309272057848]
本稿では,学習に基づくロボットシステムに対して,複雑な安全制約を原則的に課す方法について述べる。
我々のアプローチは、安全ロボット構成の集合を表すConstraint Manifoldの概念に基づいている。
実世界のロボットエアホッケータスクにおいて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-04-13T20:55:15Z) - Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
本稿では,ロボットハンドアームシステムによる飛行物体の捕獲方法の学習を可能にするモジュラーフレームワークを提案する。
本フレームワークは,物体の軌跡予測を学習するオブジェクト状態推定器,(ii)捕捉対象のポーズのスコアとランク付けを学ぶキャッチポーズ品質ネットワーク,(iii)ロボットハンドをキャッチ前ポーズに移動させるように訓練されたリーチ制御ポリシ,(iv)ソフトキャッチ動作を行うように訓練された把握制御ポリシの5つのコアモジュールから構成される。
各モジュールと統合システムのシミュレーションにおいて、我々のフレームワークを広範囲に評価し、飛行における高い成功率を示す。
論文 参考訳(メタデータ) (2023-12-21T16:20:12Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
触覚能動推論強化学習(Tactile Active Inference Reinforcement Learning, Tactile-AIRL)と呼ばれるロボット操作におけるスキル学習手法を提案する。
強化学習(RL)の性能を高めるために,モデルに基づく手法と本質的な好奇心をRLプロセスに統合した能動推論を導入する。
本研究では,タスクをプッシュする非包括的オブジェクトにおいて,学習効率が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-11-19T10:19:22Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Learning to Generate All Feasible Actions [4.333208181196761]
アクションマッピングは、学習プロセスを2つのステップに分割する新しいアプローチである。
本稿では、実現可能性モデルの自己教師型クエリにより、実現可能なすべてのアクションを生成することを学ぶことで、実現可能性部分に焦点を当てる。
エージェントが接続不能な実行可能なアクションセット間でアクションを生成する能力を示す。
論文 参考訳(メタデータ) (2023-01-26T23:15:51Z) - Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural
Networks [29.239926645660823]
本稿では,制約多様体の概念を利用した新しい学習計画フレームワークを提案する。
我々の手法は任意の制約を満たす計画を生成し、ニューラルネットワークの推論時間という短い一定時間でそれらを計算する。
我々は,2つのシミュレートされたタスクと,ロボット・エアホッケーにおける打撃動作を実行するために,クカ・LBRIiwa 14ロボットアームを用いた実世界のシナリオに対して,我々のアプローチを検証した。
論文 参考訳(メタデータ) (2023-01-11T06:54:11Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - Learning compositional models of robot skills for task and motion
planning [39.36562555272779]
センサモレータプリミティブを用いて複雑な長距離操作問題を解決することを学ぶ。
能動的学習とサンプリングに最先端の手法を用いる。
我々は,選択した原始行動の質を計測することで,シミュレーションと実世界の双方でアプローチを評価する。
論文 参考訳(メタデータ) (2020-06-08T20:45:34Z) - Thinking While Moving: Deep Reinforcement Learning with Concurrent
Control [122.49572467292293]
本研究では,制御システムの時間的進化とともに,ポリシーからのアクションのサンプリングを同時に行わなければならないような環境下での強化学習について検討する。
人や動物のように、ロボットは思考と移動を同時に行わなければならず、前の動作が完了する前に次の動作を決定する。
論文 参考訳(メタデータ) (2020-04-13T17:49:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。