Using the SOCIO Chatbot for UML Modelling: A Family of Experiments
- URL: http://arxiv.org/abs/2408.14085v1
- Date: Mon, 26 Aug 2024 08:12:11 GMT
- Title: Using the SOCIO Chatbot for UML Modelling: A Family of Experiments
- Authors: Ranci Ren, John W. Castro, Adrián Santos, Oscar Dieste, Silvia T. Acuña,
- Abstract summary: We compare the usability of SOCIO for collaborative modelling (i.e., SOCIO) and an online web tool (i.e., Creately) in academic settings.
The student participants were faster at building class diagrams using SOCIO than with the online collaborative tool.
Our study has helped us to shed light on the future direction for experimentation in this field.
- Score: 0.1957338076370071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Context: Recent developments in natural language processing have facilitated the adoption of chatbots in typically collaborative software engineering tasks (such as diagram modelling). Families of experiments can assess the performance of tools and processes and, at the same time, alleviate some of the typical shortcomings of individual experiments (e.g., inaccurate and potentially biased results due to a small number of participants). Objective: Compare the usability of a chatbot for collaborative modelling (i.e., SOCIO) and an online web tool (i.e., Creately). Method: We conducted a family of three experiments to evaluate the usability of SOCIO against the Creately online collaborative tool in academic settings. Results: The student participants were faster at building class diagrams using the chatbot than with the online collaborative tool and more satisfied with SOCIO. Besides, the class diagrams built using the chatbot tended to be more concise -albeit slightly less complete. Conclusion: Chatbots appear to be helpful for building class diagrams. In fact, our study has helped us to shed light on the future direction for experimentation in this field and lays the groundwork for researching the applicability of chatbots in diagramming.
Related papers
- Perceived Usability of Collaborative Modeling Tools [0.1957338076370071]
We compare the perceived usability of two similarly online collaborative modeling tools.
We performed a quantitative and qualitative exploration, employing inferential statistics and thematic analysis.
arXiv Detail & Related papers (2024-08-26T08:19:23Z) - Online Context Learning for Socially-compliant Navigation [49.609656402450746]
This letter introduces an online context learning method that aims to empower robots to adapt to new social environments online.
Experiments using a community-wide simulator show that our method outperforms the state-of-the-art ones.
arXiv Detail & Related papers (2024-06-17T12:59:13Z) - Deep Learning Based Amharic Chatbot for FAQs in Universities [0.0]
This paper proposes a model that answers frequently asked questions (FAQs) in the Amharic language.
The proposed program employs tokenization, stop word removal, and stemming to analyze and categorize Amharic input sentences.
The model was integrated with Facebook Messenger and deployed on a Heroku server for 24-hour accessibility.
arXiv Detail & Related papers (2024-01-26T18:37:21Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Beyond Traditional Teaching: The Potential of Large Language Models and
Chatbots in Graduate Engineering Education [0.0]
This paper explores the potential integration of large language models (LLMs) and chatbots into graduate engineering education.
We develop a question bank from the course material and assess the bot's ability to provide accurate, insightful responses.
We demonstrate how powerful plugins like Wolfram Alpha for mathematical problem-solving and code interpretation can significantly extend the bot's capabilities.
arXiv Detail & Related papers (2023-09-09T13:37:22Z) - ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large
Language Models [125.7209927536255]
We propose ChatCoT, a tool-augmented chain-of-thought reasoning framework for chat-based LLMs.
In ChatCoT, we model the chain-of-thought (CoT) reasoning as multi-turn conversations, to utilize tools in a more natural way through chatting.
Our approach can effectively leverage the multi-turn conversation ability of chat-based LLMs, and integrate the thought chain following and tools manipulation in a unified way.
arXiv Detail & Related papers (2023-05-23T17:54:33Z) - AI Based Chatbot: An Approach of Utilizing On Customer Service
Assistance [0.0]
The project aims to develop the system that could comply with complex questions and logical output answers.
The ultimate goal is to give high-quality results (answers) based on user input (question)
arXiv Detail & Related papers (2022-06-18T00:59:10Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.