論文の概要: Fire-Flyer AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning
- arxiv url: http://arxiv.org/abs/2408.14158v2
- Date: Sat, 31 Aug 2024 13:33:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 16:21:29.745235
- Title: Fire-Flyer AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning
- Title(参考訳): Fire-Flyer AI-HPC - ディープラーニングのためのコスト効果のあるソフトウェアハードウェアの共同設計
- Authors: Wei An, Xiao Bi, Guanting Chen, Shanhuang Chen, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Wenjun Gao, Kang Guan, Jianzhong Guo, Yongqiang Guo, Zhe Fu, Ying He, Panpan Huang, Jiashi Li, Wenfeng Liang, Xiaodong Liu, Xin Liu, Yiyuan Liu, Yuxuan Liu, Shanghao Lu, Xuan Lu, Xiaotao Nie, Tian Pei, Junjie Qiu, Hui Qu, Zehui Ren, Zhangli Sha, Xuecheng Su, Xiaowen Sun, Yixuan Tan, Minghui Tang, Shiyu Wang, Yaohui Wang, Yongji Wang, Ziwei Xie, Yiliang Xiong, Yanhong Xu, Shengfeng Ye, Shuiping Yu, Yukun Zha, Liyue Zhang, Haowei Zhang, Mingchuan Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Yuheng Zou,
- Abstract要約: 我々は、シナジスティックなハードウェアとソフトウェアの共同設計フレームワークであるFire-Flyer AI-HPCアーキテクチャとそのベストプラクティスを紹介する。
ディープラーニング(DL)トレーニングでは、1万のPCIe A100 GPUでFire-Flyer 2をデプロイし、DGX-A100の性能評価を達成し、コストを半分に削減し、エネルギー消費を40%削減しました。
HaiScaleや3FS,HAI-Platformといったソフトウェアスタックを通じて,計算処理と通信を重複させることで,大幅なスケーラビリティを実現しました。
- 参考スコア(独自算出の注目度): 49.997801914237094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress in Deep Learning (DL) and Large Language Models (LLMs) has exponentially increased demands of computational power and bandwidth. This, combined with the high costs of faster computing chips and interconnects, has significantly inflated High Performance Computing (HPC) construction costs. To address these challenges, we introduce the Fire-Flyer AI-HPC architecture, a synergistic hardware-software co-design framework and its best practices. For DL training, we deployed the Fire-Flyer 2 with 10,000 PCIe A100 GPUs, achieved performance approximating the DGX-A100 while reducing costs by half and energy consumption by 40%. We specifically engineered HFReduce to accelerate allreduce communication and implemented numerous measures to keep our Computation-Storage Integrated Network congestion-free. Through our software stack, including HaiScale, 3FS, and HAI-Platform, we achieved substantial scalability by overlapping computation and communication. Our system-oriented experience from DL training provides valuable insights to drive future advancements in AI-HPC.
- Abstract(参考訳): ディープラーニング(DL)と大規模言語モデル(LLM)の急速な進歩により、計算能力と帯域幅の需要が指数関数的に増加した。
これは高速な計算チップとインターコネクトの高コストと組み合わさって、ハイパフォーマンス・コンピューティング(HPC)の構築コストを大幅に膨らませた。
これらの課題に対処するために、シナジスティックなハードウェアとソフトウェアの共同設計フレームワークであるFire-Flyer AI-HPCアーキテクチャとそのベストプラクティスを紹介します。
DLトレーニングでは,1万台のPCIe A100 GPUでFire-Flyer 2をデプロイし,DGX-A100の性能評価を達成し,コストを半減し,エネルギー消費を40%削減した。
我々は、アレーダ通信を高速化するためにHFReduceを特別に設計し、計算-ストレージ統合ネットワークの混雑を抑えるために多数の対策を実行した。
HaiScaleや3FS,HAI-Platformといったソフトウェアスタックを通じて,計算処理と通信を重複させることで,大幅なスケーラビリティを実現しました。
DLトレーニングによるシステム指向エクスペリエンスは、AI-HPCの今後の進歩を促進する上で、貴重な洞察を提供する。
関連論文リスト
- Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - Cross-Layer Design for AI Acceleration with Non-Coherent Optical
Computing [5.188712126001397]
非コヒーレントな光コンピューティングプラットフォームにおいて、層間設計がいかに課題を克服できるかを示す。
非コヒーレント光学コンピューティングは、AIワークロードの光速加速のための有望なアプローチである。
論文 参考訳(メタデータ) (2023-03-22T21:03:40Z) - Heterogeneous Data-Centric Architectures for Modern Data-Intensive
Applications: Case Studies in Machine Learning and Databases [9.927754948343326]
Processing-in-Memory(PIM)は、現代のアプリケーションにおけるデータ移動のボトルネックを軽減する、有望な実行パラダイムである。
本稿では,2つの現代的なデータ集約型アプリケーションに対して,PIMパラダイムの活用方法を示す。
論文 参考訳(メタデータ) (2022-05-29T13:43:17Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
我々は、フィールドプログラマブルゲートアレイ(FPGA)を用いた分散AI訓練システムのための新しいスマートネットワークインタフェースカード(NIC)を提案する。
提案するFPGAベースのAIスマートNICは,従来のNICを用いたベースラインシステムと比較して,6ノードで1.6倍,32ノードで2.5倍の性能向上が期待できる。
論文 参考訳(メタデータ) (2022-04-22T21:57:00Z) - Scalable Deep-Learning-Accelerated Topology Optimization for Additively
Manufactured Materials [4.221095652322005]
トポロジー最適化(TO)は、新しい構造、材料、デバイスを設計するための、人気があり強力な計算手法である。
これらの課題に対処するため、SDL-TOと呼ばれる汎用拡張型ディープラーニング(DL)ベースのToフレームワークを提案する。
我々のフレームワークは、反復履歴データを学習し、与えられた設計と勾配のマッピングを同時にトレーニングすることで、TOを加速します。
論文 参考訳(メタデータ) (2020-11-28T17:38:31Z) - Integrating Deep Learning in Domain Sciences at Exascale [2.241545093375334]
我々は,大規模HPCシステム上でディープラーニングモデルとアプリケーションを効率的に動作させるための既存パッケージの評価を行った。
本稿では,現在の大規模異種システムに対する新しい非同期並列化と最適化手法を提案する。
従来の計算集約型アプリケーションとデータ集約型アプリケーションをAIで拡張するための図表と潜在的なソリューションを提案する。
論文 参考訳(メタデータ) (2020-11-23T03:09:58Z) - Optimizing Deep Learning Recommender Systems' Training On CPU Cluster
Architectures [56.69373580921888]
クラウドコンピューティングセンターのAIサイクルの大部分を占めるRecommender Systemsに注目します。
HPC用に調整された最新のCPUハードウェアとソフトウェア上で動作可能にすることで、パフォーマンスの2桁以上の改善を達成できます。
論文 参考訳(メタデータ) (2020-05-10T14:40:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。