Safe Human Robot Navigation in Warehouse Scenario
- URL: http://arxiv.org/abs/2503.21141v1
- Date: Thu, 27 Mar 2025 04:12:27 GMT
- Title: Safe Human Robot Navigation in Warehouse Scenario
- Authors: Seth Farrell, Chenghao Li, Hongzhan Yu, Ryo Yoshimitsu, Sicun Gao, Henrik I. Christensen,
- Abstract summary: This work proposes a novel methodology that leverages control barrier functions (CBFs) to enhance safety in warehouse navigation.<n>By integrating learning-based CBFs with the Open Robotics Middleware Framework (OpenRMF), the system achieves adaptive and safety-enhanced controls in multi-robot, multi-agent scenarios.
- Score: 15.277331501780488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of autonomous mobile robots (AMRs) in industrial environments, particularly warehouses, has revolutionized logistics and operational efficiency. However, ensuring the safety of human workers in dynamic, shared spaces remains a critical challenge. This work proposes a novel methodology that leverages control barrier functions (CBFs) to enhance safety in warehouse navigation. By integrating learning-based CBFs with the Open Robotics Middleware Framework (OpenRMF), the system achieves adaptive and safety-enhanced controls in multi-robot, multi-agent scenarios. Experiments conducted using various robot platforms demonstrate the efficacy of the proposed approach in avoiding static and dynamic obstacles, including human pedestrians. Our experiments evaluate different scenarios in which the number of robots, robot platforms, speed, and number of obstacles are varied, from which we achieve promising performance.
Related papers
- Towards Autonomous Micromobility through Scalable Urban Simulation [52.749987132021324]
Current micromobility depends mostly on human manual operation (in-person or remote control)
In this work, we present a scalable urban simulation solution to advance autonomous micromobility.
arXiv Detail & Related papers (2025-05-01T17:52:29Z) - Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
We propose a hierarchical control framework leveraging neural network verification techniques to design control barrier functions (CBFs) and policy correction mechanisms.
Our approach relies on probabilistic enumeration to identify unsafe regions of operation, which are then used to construct a safe CBF-based control layer.
These experiments demonstrate the ability of the proposed solution to correct unsafe actions while preserving efficient navigation behavior.
arXiv Detail & Related papers (2025-04-30T13:47:25Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [68.36528819227641]
This paper systematically quantifies the robustness of VLA-based robotic systems.<n>We introduce two untargeted attack objectives that leverage spatial foundations to destabilize robotic actions, and a targeted attack objective that manipulates the robotic trajectory.<n>We design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning [0.0]
We present a novel methodology that enhances the robot's interaction with different types of agents and obstacles.
This approach uses information about the entity types, improving collision avoidance and ensuring safer navigation.
We introduce a new reward function that penalizes the robot for collisions with different entities such as adults, bicyclists, children, and static obstacles.
arXiv Detail & Related papers (2024-08-26T11:16:03Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs [12.787160626087744]
We propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs)
ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses.
EKGs provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols.
arXiv Detail & Related papers (2024-05-28T05:50:25Z) - Robust and Versatile Bipedal Jumping Control through Reinforcement
Learning [141.56016556936865]
This work aims to push the limits of agility for bipedal robots by enabling a torque-controlled bipedal robot to perform robust and versatile dynamic jumps in the real world.
We present a reinforcement learning framework for training a robot to accomplish a large variety of jumping tasks, such as jumping to different locations and directions.
We develop a new policy structure that encodes the robot's long-term input/output (I/O) history while also providing direct access to a short-term I/O history.
arXiv Detail & Related papers (2023-02-19T01:06:09Z) - Safe reinforcement learning of dynamic high-dimensional robotic tasks:
navigation, manipulation, interaction [31.553783147007177]
In reinforcement learning, safety is even more fundamental for exploring an environment without causing any damage.
This paper introduces a new formulation of safe exploration for reinforcement learning of various robotic tasks.
Our approach applies to a wide class of robotic platforms and enforces safety even under complex collision constraints learned from data.
arXiv Detail & Related papers (2022-09-27T11:23:49Z) - SERA: Safe and Efficient Reactive Obstacle Avoidance for Collaborative
Robotic Planning in Unstructured Environments [1.5229257192293197]
We propose a novel methodology for reactive whole-body obstacle avoidance.
Our approach allows a robotic arm to proactively avoid obstacles of arbitrary 3D shapes without direct contact.
Our methodology provides a robust and effective solution for safe human-robot collaboration in non-stationary environments.
arXiv Detail & Related papers (2022-03-24T21:11:43Z) - Regularized Deep Signed Distance Fields for Reactive Motion Generation [30.792481441975585]
Distance-based constraints are fundamental for enabling robots to plan their actions and act safely.
We propose Regularized Deep Signed Distance Fields (ReDSDF), a single neural implicit function that can compute smooth distance fields at any scale.
We demonstrate the effectiveness of our approach in representative simulated tasks for whole-body control (WBC) and safe Human-Robot Interaction (HRI) in shared workspaces.
arXiv Detail & Related papers (2022-03-09T14:21:32Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.