論文の概要: Bosonic Quantum Error Correction with Neutral Atoms in Optical Dipole Traps
- arxiv url: http://arxiv.org/abs/2408.14251v1
- Date: Mon, 26 Aug 2024 13:13:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:01:29.203839
- Title: Bosonic Quantum Error Correction with Neutral Atoms in Optical Dipole Traps
- Title(参考訳): 光双極子トラップにおける中性原子によるボソニック量子誤差補正
- Authors: Leon H. Bohnmann, David F. Locher, Johannes Zeiher, Markus Müller,
- Abstract要約: ボソニックなコードとしては、Gottesman-Kitaev-Preskill (GKP)がある。
本研究では,光双極子トラップに蓄えられた中性原子の振動モードにおけるGKP量子ビットの合成と誤差補正について理論的に検討する。
私たちが開発するプロトコルは、運動状態と、さらに、閉じ込められた原子の内部電子状態を利用して、アンシラ量子ビットとして機能する。
- 参考スコア(独自算出の注目度): 1.351813974961217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bosonic quantum error correction codes encode logical qubits in the Hilbert space of one or multiple harmonic oscillators. A prominent class of bosonic codes are Gottesman-Kitaev-Preskill (GKP) codes of which implementations have been demonstrated with trapped ions and microwave cavities. In this work, we investigate theoretically the preparation and error correction of a GKP qubit in a vibrational mode of a neutral atom stored in an optical dipole trap. This platform has recently shown remarkable progress in simultaneously controlling the motional and electronic degrees of freedom of trapped atoms. The protocols we develop make use of motional states and, additionally, internal electronic states of the trapped atom to serve as an ancilla qubit. We compare optical tweezer arrays and optical lattices and find that the latter provide more flexible control over the confinement in the out-of-plane direction, which can be utilized to optimize the conditions for the implementation of GKP codes. Concretely, the different frequency scales that the harmonic oscillators in the axial and radial lattice directions exhibit and a small oscillator anharmonicity prove to be beneficial for robust encodings of GKP states. Finally, we underpin the experimental feasibility of the proposed protocols by numerically simulating the preparation of GKP qubits in optical lattices with realistic parameters.
- Abstract(参考訳): ボソニック量子誤差補正符号は、1つまたは複数の調和振動子のヒルベルト空間における論理量子ビットを符号化する。
ボソニックなコードとしては、Gottesman-Kitaev-Preskill (GKP) がある。
本研究では,光双極子トラップに蓄えられた中性原子の振動モードにおけるGKP量子ビットの合成と誤差補正について理論的に検討する。
このプラットフォームは、閉じ込められた原子の運動自由度と電子自由度を同時に制御する際、顕著な進歩を見せている。
私たちが開発するプロトコルは、運動状態と、さらに、閉じ込められた原子の内部電子状態を利用して、アンシラ量子ビットとして機能する。
我々は,光ツイーザアレイと光学格子を比較し,GKP符号の実装条件の最適化に利用可能な,平面外方向の閉じ込めをより柔軟に制御できることを見出した。
具体的には、軸方向と半径方向の高調波発振器が示す周波数スケールと、小さな発振器アンハーモニック性は、GKP状態の堅牢な符号化に有用であることを示す。
最後に、現実的なパラメータを持つ光学格子におけるGKP量子ビットの生成を数値シミュレーションすることにより、提案プロトコルの実験的実現可能性について考察する。
関連論文リスト
- Entanglement-enhanced quantum sensing via optimal global control [0.0]
共役キャビティモードに結合した$N$スピンの対称ディック部分空間における任意の絡み合った状態を生成するための決定論的プロトコルを提案する。
この研究は、キャビティ内の冷たい閉じ込められた原子と絡み合うエンハンスドセンシングへの道を開き、また、閉じ込められたイオンの実験にも関係している。
論文 参考訳(メタデータ) (2024-09-19T17:38:09Z) - Error Correcting States in Ultracold Atoms [0.0]
深部光学格子の個々の部位に閉じ込められた単一超低温原子を用いたGKP(Gottesman-Kitaev-Preskill)誤り訂正量子ビットを符号化する方法を実証する。
量子最適制御プロトコルを用いて、10dBのスクイーズによるGKP量子ビット状態の生成を実証する。
論文 参考訳(メタデータ) (2023-12-12T21:32:29Z) - Propagating Gottesman-Kitaev-Preskill states encoded in an optical
oscillator [0.3901201146779002]
Gottesman-Kitaev-Preskill (GKP) と呼ばれる論理量子ビットは、量子コンピュータにおけるエラーの軽減に効率的である。
GKP量子ビットは、非常に非線形な物理系において、機械的およびマイクロ波的周波数でのみ実証されている。
本研究では,通信波長で光を伝搬するGKP状態を実現し,GKP状態に対するホモダイン測定を示す。
論文 参考訳(メタデータ) (2023-09-05T15:21:20Z) - Advances in Bosonic Quantum Error Correction with
Gottesman-Kitaev-Preskill Codes: Theory, Engineering and Applications [4.656672793044798]
Gottesman-Kitaev-Preskill (GKP) 符号は、量子誤り訂正の破局点に達した最初のものの一つである。
GKP符号は量子計算における約束によって広く認識されている。
本稿では,GKPコードの基本動作機構,性能評価,多くの応用について概説する。
論文 参考訳(メタデータ) (2023-08-05T16:10:47Z) - Robust suppression of noise propagation in GKP error-correction [0.0]
最近報告されたGKP量子ビットの生成と誤り訂正は、量子コンピューティングの将来に大きな期待を抱いている。
プロトコルパラメータを最適化する効率的な数値計算法を開発した。
提案手法は,GKP量子ビットを用いたフォールトトレラント量子計算への主な障害を回避している。
論文 参考訳(メタデータ) (2023-02-23T15:21:50Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
ボソニック量子誤り訂正符号は、主に単一光子損失を防ぐために設計されている。
エラー修正には、エラー状態 -- 逆のパリティを持つ -- をコード状態にマッピングするリカバリ操作が必要です。
ここでは、ボソニックモード上での光子数選択同時光子加算演算のコレクションを実現する。
論文 参考訳(メタデータ) (2022-12-22T23:32:21Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
本研究では,Landau-Zenerモデルにおける過渡ダイナミクスを,Landau-Zener速度の関数として検討する。
我々の実験は、工学的なボソニックモードスペクトルに結合した量子ビットを用いたより複雑なシミュレーションの道を開いた。
論文 参考訳(メタデータ) (2022-11-26T15:04:11Z) - Bosonic field digitization for quantum computers [62.997667081978825]
我々は、離散化された場振幅ベースで格子ボゾン場の表現に対処する。
本稿では,エラースケーリングを予測し,効率的な量子ビット実装戦略を提案する。
論文 参考訳(メタデータ) (2021-08-24T15:30:04Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Hardware-efficient error-correcting codes for large nuclear spins [62.997667081978825]
本稿では、実験的に実現可能な演算を用いて、核スピンの位相反転を補正するハードウェア効率の量子プロトコルを提案する。
結果は、修正されたスピンベースの量子ビットに対して実現可能なブループリントを提供する。
論文 参考訳(メタデータ) (2021-03-15T17:14:48Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
本稿では、非相互デバイスと、基底空間が2倍縮退し、基底状態がGottesman-Kitaev-Preskill(GKP)符号の近似符号であるジョセフソン接合からなる回路設計について述べる。
この回路は、電荷やフラックスノイズなどの超伝導回路の一般的なノイズチャネルに対して自然に保護されており、受動的量子誤差補正に使用できることを示唆している。
論文 参考訳(メタデータ) (2020-02-18T16:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。