論文の概要: Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects
- arxiv url: http://arxiv.org/abs/2408.14273v1
- Date: Mon, 26 Aug 2024 13:46:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:51:27.168579
- Title: Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects
- Title(参考訳): Trust, but Verify: オープンソースソフトウェアプロジェクトにおけるセキュリティ脆弱性の緩和における開発者の振る舞いの評価
- Authors: Janislley Oliveira de Sousa, Bruno Carvalho de Farias, Eddie Batista de Lima Filho, Lucas Carvalho Cordeiro,
- Abstract要約: 本研究では,オープンソースソフトウェア(OSS)プロジェクトの依存関係の脆弱性について検討する。
古い依存関係やメンテナンスされていない依存関係に共通する問題を特定しました。
その結果, 直接的な依存関係の削減と, 強力なセキュリティ記録を持つ高度に確立されたライブラリの優先順位付けが, ソフトウェアセキュリティの状況を改善する効果的な戦略であることが示唆された。
- 参考スコア(独自算出の注目度): 0.11999555634662631
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study investigates vulnerabilities in dependencies of sampled open-source software (OSS) projects, the relationship between these and overall project security, and how developers' behaviors and practices influence their mitigation. Through analysis of OSS projects, we have identified common issues in outdated or unmaintained dependencies, including pointer dereferences and array bounds violations, that pose significant security risks. We have also examined developer responses to formal verifier reports, noting a tendency to dismiss potential issues as false positives, which can lead to overlooked vulnerabilities. Our results suggest that reducing the number of direct dependencies and prioritizing well-established libraries with strong security records are effective strategies for enhancing the software security landscape. Notably, four vulnerabilities were fixed as a result of this study, demonstrating the effectiveness of our mitigation strategies.
- Abstract(参考訳): 本研究では,オープンソースソフトウェア(OSS)プロジェクトの依存関係の脆弱性,これらとプロジェクト全体のセキュリティの関係,開発者の行動やプラクティスが緩和に与える影響について検討する。
OSSプロジェクトの分析を通じて、ポインタの参照遅延や配列境界違反など、古いあるいはメンテナンスされていない依存関係の一般的な問題を特定し、重大なセキュリティリスクを生じさせました。
我々はまた、正式な検証対象レポートに対する開発者の反応を調査し、潜在的な問題を偽陽性として否定する傾向があり、見落としの脆弱性につながる可能性があることを指摘した。
この結果から, 直接依存関係の削減と, セキュリティ記録の充実したライブラリの優先順位付けが, ソフトウェアセキュリティの状況改善に有効な戦略であることが示唆された。
特に,本研究の結果,4つの脆弱性が修正され,緩和戦略の有効性が示された。
関連論文リスト
- On Categorizing Open Source Software Security Vulnerability Reporting Mechanisms on GitHub [1.7174932174564534]
オープンソースプロジェクトはソフトウェア開発に不可欠だが、修正なしで脆弱性を公表することは、エクスプロイトのリスクを増大させる。
OpenSSF(Open Source Security Foundation)は、プロジェクトセキュリティを強化するための堅牢なセキュリティポリシーを促進することでこの問題に対処している。
現在の調査では、多くのプロジェクトがOpenSSFの基準で不十分なパフォーマンスを示しており、より強力なセキュリティプラクティスの必要性を示している。
論文 参考訳(メタデータ) (2025-02-11T09:23:24Z) - OpenAI o1 System Card [274.83891368890977]
o1モデルシリーズは、思考の連鎖を用いて推論するために大規模な強化学習で訓練されている。
本報告では,OpenAI o1およびOpenAI o1-miniモデルに対して実施される安全作業の概要について述べる。
論文 参考訳(メタデータ) (2024-12-21T18:04:31Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
我々は,大規模言語モデル(LLM)の安全性を評価するための総合ベンチマークであるAgent-SafetyBenchを紹介する。
Agent-SafetyBenchは349のインタラクション環境と2,000のテストケースを含み、安全リスクの8つのカテゴリを評価し、安全でないインタラクションで頻繁に発生する10の一般的な障害モードをカバーする。
16 名の LLM エージェントを評価した結果,いずれのエージェントも 60% 以上の安全性スコアを達成できないことがわかった。
論文 参考訳(メタデータ) (2024-12-19T02:35:15Z) - A Mixed-Methods Study of Open-Source Software Maintainers On Vulnerability Management and Platform Security Features [6.814841205623832]
本稿では,OSSメンテナの脆弱性管理とプラットフォームセキュリティ機能について考察する。
サプライチェーンの不信や、脆弱性管理の自動化の欠如が、最も困難であることに気付きました。
プラットフォームのセキュリティ機能を採用する上での障壁は、認識の欠如と、それらが必要ないという認識の欠如である。
論文 参考訳(メタデータ) (2024-09-12T00:15:03Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - Exploiting Library Vulnerability via Migration Based Automating Test
Generation [16.39796265296833]
ソフトウェア開発において、開発者は既存の機能を実装するのを避けるためにサードパーティのライブラリを幅広く利用する。
脆弱性のエクスプロイトは、公開後に脆弱性を再現するためのコードスニペットとして、豊富な脆弱性関連情報を含んでいる。
本研究は、開発者が依存関係を更新するかどうかを判断する基盤として脆弱性エクスプロイトテストを提供するVESTAと呼ばれる、脆弱性エクスプロイトに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T06:46:45Z) - Enhancing Large Language Models for Secure Code Generation: A
Dataset-driven Study on Vulnerability Mitigation [24.668682498171776]
大規模言語モデル(LLM)はコード生成に大きな進歩をもたらし、初心者と経験豊富な開発者の両方に恩恵を与えている。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を不注意に伝播するリスクをもたらす。
本稿では,ソフトウェアセキュリティの観点からのLLMの評価と拡張に焦点をあてた総合的研究について述べる。
論文 参考訳(メタデータ) (2023-10-25T00:32:56Z) - Do Software Security Practices Yield Fewer Vulnerabilities? [6.6840472845873276]
本研究の目的は、専門家や研究者がどのセキュリティプラクティスを採用するべきかを判断するのを支援することである。
4つのセキュリティプラクティスが、脆弱性数に影響を与える最も重要なプラクティスでした。
パッケージの総セキュリティスコアが増加するにつれて、報告された脆弱性の数は減少した。
論文 参考訳(メタデータ) (2022-10-20T20:04:02Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。